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Abstract

In this paper, we introduce Gabor shearlets, a variant of shearlet systems, which are based on a different group
representation than previous shearlet constructions: they combine elements from Gabor and wavelet frames
in their construction. As a consequence, they can be implemented with standard filters from wavelet theory
in combination with standard Gabor windows. Unlike the usual shearlets, the new construction can achieve
a redundancy as close to one as desired. Our construction follows the general strategy for shearlets. First we
define group-based Gabor shearlets and then modify them to a cone-adapted version. In combination with
Meyer filters, the cone-adapted Gabor shearlets constitute a tight frame and provide low-redundancy sparse
approximations of the common model class of anisotropic features which are cartoon-like functions.
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1. Introduction

During the last 10 years, directional representation systems such as curvelets and shearlets were intro-
duced to accommodate the need for sparse approximations of anisotropic features in multivariate data. These
anisotropic features, such as singularities on lower dimensional embedded manifolds, called for representa-
tion systems to sparsely approximate such data. Prominent examples in the 2-dimensional setting are edge-
like structures in images in the regime of explicitly given data and shock fronts in transport equations in the
regime of implicitly given data. Because of their isotropic nature, wavelets are not as well adapted to this task
as curvelets [3], contourlets [6], or shearlets [18]. Recently, a general framework for directional representa-
tion systems based on parabolic scaling — a scaling adapted to the fact that the regularity of the singularity in
the considered model is C?> — was introduced in [8] seeking to provide a comprehensive viewpoint towards
sparse approximations of cartoon-like functions.

Each system comes with its own advantages and disadvantages. Shearlet systems distinguished them-
selves by the fact that these systems are available as compactly supported systems — which is desirable for
applications requiring high spatial localization such as PDE solvers — and also provide a unified treatment of
the continuum and digital setting thereby ensuring faithful implementations. Shearlets were introduced in [9]
with the early theory focussing on band-limited shearlets, see e.g. [11]. Later, a compactly supported variant
was introduced in [17], which again provides optimally sparse approximations of cartoon-like functions [19].
In contrast to those properties, contourlets do not provide optimally sparse approximations and curvelets are
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neither compactly supported nor do they treat the continuum and digital realm uniformly due to the fact that
they are based on rotation in contrast to shearing.

1.1. Key Problem
One major problem — which might even be considered a “holy grail” of the area of geometric multiscale
analysis — is whether a system can be designed which is

(P1) an orthonormal basis,

(P2) compactly supported,

(P3) possesses a multiresolution structure,

(P4) and provides optimally sparse approximations of cartoon-like functions.

Focussing from now on entirely on shearlets, we can observe that bandlimited shearlets satisfy (P4) while
replacing (P1) with being a tight frame. Compactly supported shearlets accommodate (P2) and (P4), and
form a frame with controllable frame bounds as a substitute for (P1). We are still far from being able to
construct a system satisfying all those properties — also by going beyond shearlets — , and it is not even clear
whether this is at all possible, cf. also [16]. Several further attempts were already made in the past. In [20],
shearlet systems were introduced based on a subdivision scheme, which naturally leads to (P2) and (P3), but
not (P1) — not even being tight — and (P4). In [12], a different multiresolution approach was utilized leading
to systems which satisfy (P2) and (P3), but not (P4), and (P1) only by forming a tight frame without results
on their redundancy.

1.2. What are Gabor Shearlets?

The main idea of the present construction is to use a deformation of the group operation that common
shearlet systems are based upon together with a decomposition in the frequency domain to ensure an almost
uniform treatment of different directions, while modeling the systems as closely as possible after the one-
dimensional multiresolution analysis (MRA) wavelets. To be more precise, the new group operation includes
shears and chirp modulations which satisfy the well-studied Weyl-Heisenberg commutation relations. Thus,
the shear part naturally leads us to Gabor frame constructions instead of an alternative viewpoint in which
shears enter in composite dilations [10]. The filters appearing in this construction can be chosen as the
trigonometric polynomials belonging to standard wavelets or to M-band versions of them, or as the smooth
filters associated with Meyer’s construction. To achieve the optimal approximation rate for cartoon-like
functions, we use a cone adaptation procedure. But in contrast to other constructions, we avoid incorporating
redundancy in this step.

It is interesting to notice that due to the different group structure, Gabor shearlets do not fall into the frame-
work of parabolic molecules (cf. [8]) although they are based on parabolic scaling. Thus, this framework can
not be used in our situation for deriving results on sparse approximations by transfering such properties from
other systems.

1.3. Our Contributions
Gabor shearlets satisfy the following properties, related to Subsection 1.1:

(P1*) Gabor shearlets can be chosen to be unit norm and b~'-tight, where 5~' — which can be interpreted as
the redundancy (cf. Subsection 2.4) — can be chosen arbitrarily close to one.
(P2%) Gabor shearlets are not compactly supported, but can be constructed with polynomial decay in the spa-
tial domain.
(P3) The two-scale relation for the shearlet subband decomposition is implemented with standard filters re-
lated to MRA wavelets.
(P4) In conjunction with a cone-adaptation strategy and Meyer filters, Gabor shearlets provide optimally
sparse approximations of cartoon-like functions.

Thus, (P3) and (P4) are satisfied. (P1) is approximately satisfied in the sense that the systems with property
(P17) are arbitrarily close to being orthonormal bases. And (P2) is also approximately satisfied by replacing
compact support by polynomial decay in (P2*). It is in this sense that we believe the development of Gabor
shearlets contributes to introducing a system satisfying (P1)-(P4). Or — if it could be proven that those are
not simultaneously satisfiable — providing a close approximation to those.



1.4. Outline of the Paper

The remainder of this paper is organized as follows. In Section 2, we set the notation and recall the
essential properties of Gabor systems, wavelets, and shearlets which are needed in the sequel. In this section,
we also briefly introduce the notion of redundancy first advocated in [1]. In Section 3, after providing some
intuition on our approach we introduce Gabor shearlets based on a group related to chirp modulations and
discuss their frame properties and the associated multiresolution structure. The projection of those Gabor
shearlets on cones in the frequency domain is then the focus of Section 4, again starting with the construction
followed by a discussion of similar properties as before. The last section, Section 5, contains the analysis of
sparse approximation properties of cone-adapted Gabor shearlets.

2. Revisited: Wavelets, Shearlets, and Gabor Systems

In this section, we introduce the main notation of this paper, state the basic definitions of Gabor systems,
wavelets, and shearlets, and also recall the underlying construction principles, formulated in such a way
that Gabor shearlets will become a relatively straightforward generalization. We emphasize that this is not
an introduction to Gabor and wavelet theory, and we expect the reader to have some background knowledge,
otherwise we refer to [4] or [21]. A good general reference for most of the material presented in this section is
the book by Weiss and Herndndez [23]. In the last part of this section, we discuss the viewpoint of redundancy
from [1], which we adopt in this paper. _

In what follows, the Fourier transform of f € L'(R") is defined to be f(¢) := [, f(x)e™>"*¢dx, where
x - ¢ is the dot product between x and & in R". As usual, we extend this integral transform to the unitary
map f — f defined for any function f which is square integrable. The unitarity is captured in the Plancherel
identity (f, g) = (f,g) for any two functions f, g € L>(R") with (f, g) := fRn F(x)g(x)dx.

2.1. MRA Wavelets

Let {¢, ¢/} be a pair of a scaling function and a wavelet for L?(R) associated with a pair of a low-pass filter
H : T — C and a high-pass filter G : T — C, for convenience defined on the torus T = {z € C : |z] = 1}. We
start by recalling the Smith-Barnwell condition for filters.

Definition 2.1. A filter H : T — C satisfies the Smith-Barnwell condition, if
IHQ@P +|H(-2) = 1
for almost every z € T.

The Smith-Barnwell condition is an essential ingredient in the characterization of localized multireso-
lution analyses; that is, the scaling functions ¢ are localized in the sense of having faster than polynomial
decay: [,(1 + x)"|¢(x)*dx < o for all n € N.

Theorem 2.1 (Cohen, as in [23] Theorem 4.23 of Chapter 7). A C* function H : T — C is the low-pass
filter of a localized multiresolution analysis with scaling function ¢ given by

#© = [ HEe ™)
J=1
if and only if H(1) = 1, H satisfies the Smith-Barnwell condition, and there exists a set K C T which contains

1 and has a finite complement in T such that HZ) + OforalljeZ, j>0,andz € K.

The two-scale relations for ¢ and i are conveniently expressed in the frequency domain,

$(26) = He™™)p(&) and  §(26) = Ge 7™)§(§), ae. é€R.
The orthonormality of the integer translates of {¢, ¥/} is captured in the matrix identity

H(z) H(-2)

MROME" =L with M@) := [G(z) G(-2)

}, forae.zeT.



Often, only H is specified and the matrix has to be completed to a unitary, with a common choice being
G(z) = —zH(-2).

The low-pass filter of the Meyer scaling function is of particular use for the construction of Gabor shear-
lets, which will be shown in Section 5 to yield optimal sparse approximations. The Meyer scaling function ¢
and wavelet function ¢ are given by

1 if lel < 4,
P(&) = Scos(5v(3lel - 1)) if § < €] < 3,
0 otherwise,
and '
—eEsin [y - D] if << 2,
Y(&) = {—eE cos [ Tv3IE - D] ifE <lel <4,
0 otherwise.

Here, v is a function satisfying v(x) = 0 for x < 0, v(x) = 1 for x > 1, and in addition, v(x) + v(1 — x) = 1 for
0 < x < 1. For example, v can be defined to be v(x) = x*(35 — 84x + 70x> — 20x>) for x € [0, 1], which leads
to C* functions of 5 and ’w\

Then, the corresponding H is given by

| ¢l < ¢,
H(e™™) = Jcos(3v(6¢1 - 1)) & <l <1,
0 <<l

We remark that & +— H(e >™) is a 1-periodic function and the Meyer wavelet function ¢ defined above
satisfies /(2¢) = —e > H(e 27+ DYg(¢). Hence the high-pass filter G for y is given by G(z) = —zH(~z)
with z = e72%_ For any k € N, there exists v such that ¢ and ¢ are functions in C*(R). Moreover, v can be

constructed to be C so that both ¢ and ¥ are functions in C*(R) and their corresponding filters are functions
in C*(T). For more details about Meyer wavelets, we refer to [4] or [21].

2.1.1. Subband Decomposition for Discrete Data

The two-scale relation in combination with downsampling as a simple data reduction strategy is crucial
for the efficient decomposition of data from some approximation space, say V. We next formalize the
decomposition of a function f € Vy = V_; @ W_; in terms of the Z-transform.

For this, let the group of integer translations {7}, },cz acting on L?*(R) be defined by T, f(x) = f(x — n) for
almost every x € R. Then, each function f € V) can be expressed as

f= Z cnTh.
nez

This enables us to associate with f the values of the almost everywhere converging series

00

Zf(z) = Z c, 7', zeT.

n=—oo

Letting now H : T — C be the low-pass filter of a localized multiresolution analysis as specified above,
the characterization of the subspace V_; C V| can then be expressed as

feV, & Zfz=H®) (H(Z)Zf(z) + H(—Z)Zf(—Z)) forae.z€T.
This fact enables us to state a unified characterization of V_; and of W_; = V6 V_;.

Proposition 2.1. Let Py_, and Py._, denote the orthogonal projection of Vi onto V_; and W_,, respectively.
Further, letting H be defined as above, define H, to be the multiplication operator given by H,F(z) =
H(2)F(z), H- given by H_F(z) = H(—2)F(z), and R, the reflection operator satisfying RyZf(z) = Zf(—2).
Then, we have

ZPy f=H,(I+Ry)H,Zf and ZPy  f=H_(I-R)H_Zf.



Proof. We first observe that the composition of down and up-sampling sets every other coefficient in the
expansion of f to zero. After applying Z this amounts to a periodization.
By definition, the projection onto V_; satisfies

ZPy, f(2) = H@) (HR)Zf(2) + H(-Zf(-2) = H.(I + R)H.Zf(2).

Similarly, the projection onto W_; is

ZPy., f(z) = GR) (GRIZf () + G(=)Zf(-2))
= —zH(=2) (-ZH(-2)Zf(2) + ZH(@)Zf(~2))
= H(=2) (H(=2)Zf(2) - H()Zf(~2))
=H_(I-R)H_Zf(2).

The proposition is proved. O

The relevance of these identities lies in the fact that (I + R,)H,Zf is an even function whereas (I —
Ry)H_Zf is odd. Hence knowing every other coefficient in the series expansion is sufficient to determine the
projection onto the corresponding subband. Thus, in this case downsampling reduces the data without loss of
information.

2.1.2. M-Band Wavelets

If instead of a dilation factor of 2 in the two-scale relation, a factor of M is used, M — 1 wavelets are
necessary to complement the translates of ¢ to an orthonormal basis of the next higher resolution level.
In this situation, it is an M X M matrix which has to satisfy the orthogonality identity. Generalizing the
consideration in the previous subsection, let w = ¢™*/™ and Ry, Zf(z) = Zf(wz) and the scaling mask H, for
¢ satisfy Zjﬁi()l |Hy(w/z)?> = 1. We then define the orthogonal projection onto V_; in terms of the transform

M-1

ZPy,f = Ho {Z Rg;] HoZf.

=0
For a proof that Py, is indeed a projection, see the more general statement in the next theorem.

We complement the filter Hy by finding H, such that (H,(w'z))}/,}, is unitary for almost every z € T.

Once the wavelet masks Hy,{ = k ..,M—1 are con/s\tructed by matrix extension, the wavelet functions
e, £ = 1,...,M — 1 are given by y,(M¢) = Hy(e 7)), € R, € = 1,...,M — 1. It is well-known that
then {y, : £ = 1,..., M — 1} generates an orthonormal wavelet basis for L*(R).

One goal in M-band wavelet design is to choose Hy and then to complete the matrix so that the filters
H, impart desirable properties on the associated scaling function and wavelets. In fact, one can construct
orthonormal scaling functions for any dilation factor M > 2 and the matrix extension technique applies
for any dilation factor M > 2. When M > 2, the orthonormal bases can be built to be with symmetry
([13, 14, 15]).

In the same terminology as Proposition 2.1, we now have the following result that identifies the orthogonal
projections belonging to M-band wavelets.

M-1

Theorem 2.2. Let {H,,}”M= 6' be such that (H,(w )M} is unitary for almost every z € T, and let {Pw._ Yrso

n,t=0
be the operators defined by
M-1

ZPy , f = Hg{z R;'I]EZf.

=0

Then {Py_,, }?”61 are mutually orthogonal projections (note that Py_ o = Py_, ).

Proof. We first observe that by the assumed unitarity, every row is normalized, and each pair of rows is
mutually orthogonal, i.e.,

S

1
Hn(w[Z)Hm(w[Z) = 6n,m s

T
=



where 6,,,, = 1 if n = m and 6,,,, = 0 otherwise.

Next, we show that each Py._, is an orthogonal projection. To begin with, we see that Py_, , is Hermitian

because the sum ij‘i{)l RL is and this property is retained when it is conjugated by the multiplication operator

Hy. The fact that each Py_ , is idempotent and that the projections are mutually orthogonal is due to the
commutation relation o
RyHe = He(w )Ry

and because of the orthogonality of the rows in (H,(w2));L). We have for f € L*(R) and almost every
zeT,

M-1 M-1
ZPy., Pw, f() = Hy ) RyHHe ) Ry HZf(2)
m=0 n=0
M-1 M-1 .
= Hy Y H(@")H(W "Ry > RyFRZf(2)
m=0 n=0

M-1 M-1
= H; Y H{(@ D H(w"2) ) RyHZ(2)
m=0 n=0
M-1 .
= 6ekHe Y RyHZF(@) = 60ZPw.,, f2).
n=0

This finishes the proof. O

2.2. From Group-Based to Cone-Adapted Shearlets

In contrast to wavelets, shearlet systems are based on three operations: scaling, translation, and shearing;
the last one to change the orientation of those anisotropic functions. Letting the (parabolic) scaling matrix A ;
be defined by

40 ,
AJ:(O 2]), JEZ,

and the shearing matrix S be

1 -k
Sk—(o 1), keZ.

Then, for some generator € L*(R?), the group-based shearlet system is defined by
RIYSA; - —m) : jkeZme T,

Despite the nice mathematical properties — this system can be regarded as arising from a representation
of a locally compact group, the shearlet group — group-based shearlet systems suffer from the fact that they
are biased towards one axis which prevents a uniform treatment of directions. Cone-adapted shearlet sys-
tems circumvent this problem, by utilizing a particular splitting of the frequency domain into a vertical and
horizontal part. For this, we set Aif =A;, S =5k

b 20 v [ 10 .
Af_(O 4]-), and Sk—(_k 1), J k€.

Given a scaling function ¢ € L?>(R?) and some y € L*(R?), the cone-adapted shearlet system is defined by
(- —m):meZ} U (2YPYSIAL - —m): j2 0,1kl <2/, me 77
U (2PGSYAY - —m): j 2 0,k < 2/,m e 77,
where LZ(xl , X2) = ¥(x1, x2). For more details on shearlets, we refer to [18].
Gabor shearlets will also be constructed first as group based systems, and then in a cone-adapted version.

However, in contrast to other constructions, we aim at low redundancy in the group-based system and avoid
increasing it in the cone adaptation.



2.3. Gabor Frames

Like the previous systems, Gabor systems are based on translation and modulation. As usual, we denote
the modulations on L>(R) by M,, f(£) = €™ f(£).

By definition of tightness, a square-integrable function w : R — C is the window of a b~'-tight Gabor
frame, if it is unit norm and for all f € L*(R),

AP =D > K M Tl

m,nez

For more details on Gabor systems, we refer the reader to [7].
Various ways to construct such a window function w are known. We recall a construction of a b~!-tight
Gabor frame with b~! > 1 arbitrarily close to 1 [5].

Example 2.1. Let v be in C*(R) and v(x) = 0 for x < 0, v(x) = 1 for x > 1 and v(1 — x) + v(x) = 1.
Let w(x) := W((1/2 + & — |x)/2e)'/?, x € R. Then, it is easy to show that w is a smooth function with
support belonging to [-1/2 —&,1/2 + €] forany 0 < e < 1/2, Iwll? = 1 and >n T, w> = 1. Consequently, if
b=(1+2€7", then {(My,T,w: m,n € Z) defines a b’l-tight Gabor frame.

2.4. Redundancy

Since we cannot achieve (P1), but would like to approximate this property, besides the classical frame
definition, we also require a notion of redundancy. The first more refined definition of redundancy besides
the classical “number of elements divided by the dimension” definition was introduced in [1]. The extension
of this definition to the infinitely dimensional case can be found in [2]. Since this work is not intended for
publication, we make this subsection self-contained.

We start by recalling a redundancy function, which provides a means to measure the concentration of the
frame close to one vector. If {¢;};c; is a frame for a real or complex Hilbert space H without any zero vectors,
and let S = {x € H : ||x|| = 1}, then for each x € S, the associated redundancy function R : S — R* U {0} is
defined by

R = > Il [Kx, @)
i€l

Taking the supremum or the infimum over x in this definition gives rise to the so-called upper and lower
redundancy, which is in fact the upper and lower frame bound of the associated normalized frame,

RY =supR(x) and R =inf R(x).
xS x€S
For those values, it was proven in [1] that in the finite-dimensional situation, the upper redundancy provides
a means to measure the minimal number of linearly independent sets, and the lower redundancy is related to
the maximal number of spanning sets, thereby linking analytic to algebraic properties.

It is immediate to see that an orthonormal basis satisfies R~ = R* = 1, and a unit norm A-tight frame
R~ = R* = A. This motivates the following definition.

Definition 2.2. A frame {¢;}i=c; for a real or complex Hilbert space has a uniform redundancy, if R~ = R*,
and if it is unit norm and A-tight, then we say that it has redundancy A.

In the sequel, we will use the redundancy to determine to which extent (P1) is satisfied.

3. Group-Based Gabor Shearlets

Let us start with an informal description of the construction of Gabor shearlets in a special case with the
goal to first provide some intuition for the reader.

Generally speaking, the shearlet construction in this paper is a Meyer-type modification of a multires-
olution analysis based on the Shannon shearlet scaling function ®go = yx, where K = {£ € R? : & <
1 and |&,/&| < 1/2}. For an illustration, we refer to Figure 1.
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Figure 1: Support of the scaling function belonging to group-based Shannon shearlets (as well as the group-based Gabor shearlets) in
the frequency domain. Additional lines indicate the boundaries of the support for sheared scaling functions.

It is straightforward to verify that chirp modulations
D0.0,n() = X (@™ E 1 TMENN, i = (my,my) € 727,

define an orthonormal system {®g g, : m € 72}, while the use of the usual modulations

r/r\() om(&) = XK(é:)e27Timz§z Srimé

gives a 2-tight frame {Yo,, : m € Z?} for its span. The same is true when the modulations are augmented
with shears, Eo,k,m(f) = Eﬁo,o,m(f 1,&2 — k&) and likewise for "fo,k,m, in order to form the orthonormal or tight
systems {Poxm : k € Z,m € Z?} or {(Yom : k € Z,m € 72}, respectively. Because both systems are
unit-norm, the tightness constant is a good measure for redundancy as detailed in Subsection 2.4, indicating
that chirp modulations are preferable from this point of view. Incorporating parabolic scaling preserves those
properties.

In a second step (Section 4) the strategy of shearlets is followed to derive a cone-adapted version, which
provides the property of a uniform treatment of directions necessary for optimal sparse approximation results.
A further necessary ingredient for optimal sparsity are good decay properties. We show that a combination
of Gabor frames, Meyer wavelets and a change of coordinates provides smooth alternatives for the charac-
teristic function, yet with still near-orthonormal shearlet systems that are similar to the Shannon shearlet we
described.

3.1. Construction using Chirp Modulations

To begin the shearlet construction, we examine an alternative group of translations acting as chirp mod-
ulations in the frequency domain. These modulations do not correspond to the usual Euclidean translations,
but for implementations in the frequency domain this is not essential. In the following, we use the notation
R* =R\ {0}.



Definition 3.1. Let ¥(€) := (11(€),72(€) with y1(€) := 3&/I1] = sgn€)é} and y2(é) = £ for & =
(&1,&2) € R* x R. We define the two-dimensional chirp-modulations {Xg : 8 € R?} by

Xpf(6) = HTBNOBROF () £ e R xR,

We emphasize that the set with & = 0 is excluded from the domain, which does not cause problems since
it has measure zero.

Next, notice that the point transformation y has a Jacobian of magnitude one and is a bijection on R* X R.
Therefore, it defines a unitary operator I" according to

Tf(€) = fy&), £eR xR

As discussed in Subsection 2.2, the shear operator is a further ingredient of shearlet systems. By abuse of
notation, for any s € R, we will also regard S ; as an operator, that is

S f&1,6) = f(&1,6 — s&1).

The benefit of choosing the chirp-modulations is that shearing and modulation satisfy the well-known
Weyl-Heisenberg commutation relations. The proof of the following result is a straightforward calculation,
hence we omit it.

Proposition 3.1. For s € R and B € R?,
S Xg = e 7PXpS

The last ingredient is a scaling operator which gives parabolic scaling. Again abusing notation, we write
the dilation operator with A ;. For j € Z, we let A; be the dilation operator acting on f € L*(R?) by

Aif(€1,6) = 2752707, 2778)

for almost very & = (¢1,&,) € R2.

The last ingredient to define group-based Gabor shearlets are the generating functions to which those
three operators are then applied. For this, let ¢ be an orthogonal scaling function of a 16-band multiresolution
analysis in L*(R), with associated orthonormal wavelets {ng}}i ,» and let w be the unit norm window function
of a b‘l-tight Gabor frame {M,,,,Tyw : my, k € Z} for L*(R). Then we define the generators

Dooo :=Thp®w and Wi =Ty ®w, (=1,...,15.

in L(R?) = L*(R) ® L*(R), based on which we now define group-based Gabor shearlets.

Definition 3.2. Let ®o and ‘I’SOO, ¢ = 1,...,15, and w be defined as above. Let jy € Z. Then the

group-based Gabor shearlet systeni is defined by
GGS (@A) sw) =Dy -k € Zom € LY UV, k€L, j2 joome Z7,=1,...,15) C L*(R?),

where o .
(Dj,k,m(f) = AjX(m],mzb)S k(DO,O,O

= 2P GQ Iy (O ya(@) — e O Zrim e,

and —
lPikm(f ) = AjX(mlvab)S klPS,O,O

_ 2_3j/2’l,/75(2_4j)/1(f))W(zj)/z(f) _ k)e2ﬂim12’4’71(f)eZHiMzb2f72(,f)_

The particular choice of dilation factors in the first and second coordinate comes from the need for
parabolic scaling and integer dilations. The motivation is that the regularity of the singularity in the cartoon-
like model is C?, and if the generator satisfies width = length® one can basically linearize the curve inside
the support with controllable error by the Taylor expansion. Since we utilize a different group operation, it
is not immediately clear which scaling leads to the size constraints width = length®>. An integer value of j
requires 4 = j%, so j = 4. Then one considers the intertwining relationship between the dilation operator A
and the standard one-dimensional dyadic dilation D to deduce A,I" = 'D~'® ® D*, which explains the choice
of M = 16 bands.



3.2. MRA Structure

One crucial question is whether the just introduced system is associated with an MRA structure. As a first
step, we define associated scaling and wavelet spaces.

Definition 3.3. Let ®;;,, and pt e JkeZ,me 7:¢=1,...,15 be defined as in Definition 3.2. For each
J € Z, the scaling space V is the closed subspace

V; =5pan{®;y,, : k € Z,m € Z*} C L*(R?),
and the associated wavelet space W; is defined by
W; =span{¥',,, k€ Z,meZ’,t =1,...,15}.

Next, we establish that the group-based Gabor shearlet system is indeed associated with an MRA struc-
ture, and analyze how close it is to being an orthonormal basis.

Theorem 3.1. Let ®;; ,, and pl o jkeZ,meZ?€=1,...,15 be defined as in Definition 3.2 and let
{Vi}jez and {W}} jeZ be the assoczated scaling and wavelet spaces as defined in Definition 3.3. Then, for each
Jj € Z, the famlly ikm - k € Z,m € 72} is a unit norm b~'-tight frame for V;, and {‘Pi wm - k€ Z,m e

72,0 =1,...,15) forms a unit-norm b™'-tight frame for W

Proof. We first verify that the scaling function generates a b~'-tight frame for a closed subspace of L(R?).
By Proposition 3.1, the operator I intertwines shears and translations in the second component,

SiTF(E) = Tf(€1, 6 — k&) = f1(©), y2(6) = k).

Moreover, it intertwines chirp modulations with standard modulations. The overall dilation is irrelevant
because A; is unitary, so we can set j = 0 for simplicity. Therefore, it is enough to prove that {Mml$®
M, Trw} defines a b‘l-tight frame for F‘I(Vj). This follows from the fact that w is the unit norm window
function of a b~'-tight Gabor frame and from ¢ being an orthonormal scaling function. Since the subspaces
¢ ® L*(R), ¥, ® L>(R), £ = 1,...,15 are mutually orthogonal, and the functions {¢,y, : £ = 1,..., 15} satisfy
a two-scale relation of an MRA with dilation factor M = 16 in L2(R), the claim follows. ]

Theorem 3.2. The scaling and wavelet subspaces Vo and Wy as defined in Definition 3.3 satisfy the two-scale
relation
Vo Wy = A4V

Proof. We note that the functions
dow and Yr@w,l=1,...,15

are orthogonal by assumption, and the orthogonality remains under the usual modulations in the first com-
ponent. On the other hand, the window function in the second component forms a tight Gabor frame under
translations and modulations, so each of the tensor products generates a tight frame for its span.

Since the subspaces & L*(R), y,®L*(R),£ = 1,..., 15 are mutually orthogonal, and the functions {¢, ¥}
satisfy a two-scale relation of an MRA with dilation factor M = 16 in L*(R), the claim follows. O]

Since implementations only concern a finite number of scales, the following result becomes important. It
is an easy consequence of Theorem 3.1.

Corollary 3.1. The group-based Gabor shearlet system GGS (¢, {we}hd 21> W) as defined in Definition 3.2 for
any jo € Z, or the system {‘Pi wm - ok € Z,me 72,¢ = 1,...,15} forms a unit-norm b~'-tight frame for

L*(R?), and consequently it has uniform redundancy R~ = R+ = b‘l.

10



4. Cone-Adapted Gabor Shearlets

The construction of nearly orthonormal cone-adapted Gabor shearlets is based on complementing a core
subspace V, which has the usual MRA properties for L*>(R?) under scaling with a dilation factor of 16. The
isometric embedding of Vj in V| proceeds in 3 steps:

1. V) is split into a direct sum of two coarse-directional subspaces, Vf‘ and V7, corresponding to horizon-
tally and vertically aligned details, respectively.

2. Each of these two coarse-directional subspaces is split into a direct sum of high and low pass compo-
nents. The low-pass subspaces Vg and Vj combine to Vy = Vg ®V;.

3. The high pass components are further split into subspaces with a finer directional resolution obtained
from shearing.

The first step in the process of constructing the cone-adapted shearlets is a splitting between features that
are mostly aligned in the horizontal or in the vertical direction. The shearlets then refine this coarse splitting.

4.1. Cone adaptation

In addition to filters which restrict to cones in the frequency domain, we introduce quarter rotations for
the splitting of horizontal and vertical features. This enables us to define two mutually orthogonal closed
subspaces containing functions with support near the usual cones for horizontal and vertical components. As
in the case of wavelets, the main goal of this construction is that the smoothness of a function in the frequency
domain is not substantially degraded by the projection onto the subspaces.

Again, we use standard filters from wavelets in our construction. For this, we define a version of the
Cayley transform ((¢) = t—i which maps £ € R to the unit circle T = {z € C : [z] = 1}. The inverse map is
defined on T \ {-1}, £ !(z) = i=2 We use the map ¢ to lift polynomial filters on T to rational filters on R.

1+z

Lemma 4.1. Let H : T — C satisfy |HZ)* + |H(=2)]* = 1 for all z € T, then H(¢) := H({(¢)) is a function
on R which satisfies

HEP +H=1/6)P = 1.

Proof. The Cayley transform intertwines the reflection £ — —1/£ on R with the reflection about the origin,

because - e Lt ie
— i +i
—1 = = = — .
(V= e = T = 0©
Thus, the property of H is a direct consequence of this coordinate transformation. O
We observe that if H(z) has N — 1 vanishing derivatives at z = —1, H(=1) = H'(=1) = --- = HN"D(~1) =

0, then H(¢) decays as &V at infinity.

Definition 4.1. Let H : T — C satisfy the Smith-Barnwell condition |H(z)]* + |H(=2)* = 1 for all z € T.
Its associated filter operators H., H,, H- and H_, are defined to be the multiplicative operators with the
Fourier transform of any f € L*(R?) in the frequency domain according to H, f(€) = H({(&/€))f(&) and
H_f(&) = H(={(&2/£1))f (&), the overbar denoting multiplication with the complex conjugate. We denote R
to be the rotation operator on L*(R?) given by Rf(£1,&) = f(&2, —€)).

This allows us to introduce a pair of complementary orthogonal projections, which split the group based
Gabor shearlets into a vertical and a horizontal part to balance the treatment of directions. The design of these
projections is inspired by the description of smooth projections in [23].

We start the construction with isometries associated with the vertical and horizontal cone, which we
denote by C, and Cj, respectively. By the set inclusion, L?(C,) and L*(C},) naturally embed isometrically in
L*(R?). We denote these embeddings by ¢, : 1, f(&) = f(&) if € € C, and ¢, f(¢) = 0 otherwise and similarly
for ¢, We wish to find isometries that do not create discontinuities.

11



Theorem 4.1. Let H : T — C satisfy |[H@P + |[H(-2)? = 1 for all z € T, and let H., H., H_ and
H_ be defined as in Definition 4.1. Let C, = {x € R? : |xs| > |xi|} and C, = R*\ C,, then the map
g, : L*(C,) — L*(R?) given by

1+i 1

=.f=H_ I——R——R3
f ( > > of -

is an isometry, and so is the map 2y, : L*(C;) — L*(R?),

l+i 1-i
=,f = Ho(l + TZRJr TlR3)th.

Moreover, the range of E, is the orthogonal complement of the range of 2, in L*>(R?).

Proof. We begin by showing that Z, and Z, are isometries. The space L*(C,) splits into even and odd
functions. After embedding in L*(R?) these functions then satisfy R, f = ¢, f or R*t, f = -1, f, respectively.
By the definition of R, the operator I — %R - %R3 maps even ¢, f to

T+i  1-i 11 11
I-—R-—R|u,f=|=I+=R*-=R- -R*|u.f,
( Jos (z EARELRE L

which implies that it is an eigenvector of R, R(%I + %Rz - 1R3)L f = —( I+ 1R2 - 3R - %R3)va and

for odd f
1+ 1-i 1 1 i i
I-—R-—R|u,f=|=I-=R*- =R+ -R*|un.f,
| Jos (z 23 3R
which gives R(3/ — 3R> — LR + LR), f =i(31 - 3R> = LR+ LR, f.
Similarly, the operator (I + ﬁR + 1 R3) maps the even functions into functions that are invariant under
R, whereas the odd functions give elgenvectors of R corresponding to eigenvalue —i. We verify that for even

thf,
1+ 1-1
I+ R+
2 2

1 1 1

1
)thZ (§I+ §R2+ §R+ §R3)th.

Hence we get the eigenvalue equation R(3/ + SR> + R+ 1Ry, f = (31 + 3R> + R+ 1R*)y, f. Analogously,

for odd f,
1+ 1-1 1 1 i i
I+ R+ =(=I-=R*+-R- =R*
( 2 2 )“’f (2 2" T2t )”’f
which yields R(37 - SR> + iR — iR, f = (=i)(3] = 1R* + IR — IR f.
Since R is unitary, the eigenvector equations imply that the orthogonality between even and odd functions
is preserved by the embedding followed by the symmetrization with (I + %R + %R3) or (I — %R - %R3 ).
Thus, the identity

2

= 2fIP:c,, forall f € L(C,)

L2(R?)

1 1
H I- $R— TR*)LJ

can be verified by checking it separately for even and odd functions. Next, multiplying by H_ and using that
|H.?+RYH_PR = |H_|* + |H,|* = 1 gives by the orthogonality of Ry, f and ¢, f the isometry

1+i 1 2

2
H_I——R——3
- s

L2(R2)

1+ 1-1i
H. [—R+ —R3|s,
(2 ) )‘f

T+i 1-i :
H+(— + Rz)va
2 2 e

2 2 2
= Ity + IH ot f1R e, = 11, -

I 2
= ”H—va”LZ(]RZ) +

L2(R?)

2
= ”Hvaf”U(Rz) +

12



The same proof applies to =j,.
To show that the ranges are orthogonal complements of each other, we define the orthogonal projections
P, = E,=; and P;, = E;=;. We first establish that these projections have the more convenient expressions

I+i 1—i 3\— 1+i 1-i 5
P,=H., ]+TR+TR H, and P—H_ ]—TR—TR H_.

To this end, we note that if M, is the multiplication operator M, f(£) = x¢,f(&) with y¢, the characteristic
function of C,, and similarly for M;, M, f(¢) = xc,(£), then by definition

o 1+1i 1-1
PhZLhdh=H+(I+—R+

5 )H, .

M, (1

We simplify this expression using that MR = RM,, M, + M, = I and R*M,, = M,R?, which gives the
identities

(1+’R 1= R3)M+M( fRe = R*) ( iR+ - R*)M ( IR+ - R3)M 1+iR+1_iR3
2 T 2 - 2 " 2 2 2
and 1+i 1 1 1—i 1+i 1-i
+1 + l —1 +1 -1
—R+ —R3 M R} = R+ R M, =M,.
( > 5 ) h( 5 )=( > > )
Inserting this in the expression for P, results in
1+1 1-1 1+ 1-1 , —
H.(I + — R+ TR3)M,,(1 R+ TR3)H+
1+ 1 1+1 1—-i , —
= H (M +( lR + TR3) + M)H, = H.(I + T’R + T’R%H+ .

The identities for P, are completely analogous.
Finally, we show that the two orthogonal projections are complementary. To this end, we use

— 1+i 1-i
Py=H.H, + H.H (—’R > Ry

and
S e T
P, =H.H_~H_H.—~R+ —R)

which gives the identity after elementary cancellations and H,H, + H_H_ = I. Since P}, is by definition an
orthogonal projection, P, = I — P, is the complementary one. Thus, the ranges of E;, and E,, or equivalently,
the ranges of P;, and P,, are orthogonal complements in L*(R?). O]

For later use, we denote the range spaces of =, and E, by
Liy(R*) = E,(L*(Cy)  and  LY(R?) = E(L*(C))).

which are orthogonal complements in LX(R?).

Under the isometries E, or Z;, a unit norm tight frame for L*(C,) or L*(Cy) is mapped to a unit norm
tight frame for Li(R2) or L2(R?). The consequence of this is that we only need to construct shearlets for
the horizontal and vertical cones, not for all of R?. If the shearlets have smoothness and the appropriate
periodicity, then we retain smoothness under the symmetrization.

Corollary 4.1. Let g € L*(C,) be a function which is continuous in C, and even, then Z,g is continuous on
R2. If in addition there is h : R — C such that g € L*(C,) satisfies

81, 6) = hE /6,816

and h is in CK(R x R*) and 2-periodic in its first component, then E,g is k times differentiable in R? \ {0}.
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Proof. By the 2-periodicity, g(¢1,£1) = h(1,&/IE1)) = h(=1,€ /1)) = g(é,~€1). Thus, continuity of /
ensures that of Z,g. A similar argument holds for differentiability. O

This implies that we only require a resolution of the identity on [—1, 1] with an appropriate version of
Gabor frames. We refer to a result of Sgndergaard from [22].

Theorem 4.2 ([22]). Let Ny € N, a@ = 2/Ny and choose T € N, T < Ny. If w is a function in the Feichtinger
algebra, and if (M /2 Traw} is an @-tight Gabor frame for L2(R), then the periodization w°,

Wo(é) = Z W(& = 2n) for a.e. £€R,

nez
defines an %—tight Gabor frame {My)2Tiow® : 0 < k < No — 1,m € Z} for L*([-1,1)).
Of particular interest to us is the following corollary, which we can draw from this result.

Corollary 4.2. The uniform redundancy R~ = R* = % of the Gabor frame {M,:xTiew® : 0 < k <
No — 1,m € Z} defined in Theorem 4.2 can be chosen as close to one as desired by choosing No,T € N
sufficiently large.

We remark that tightness is preserved when periodizing the window, and if its support is sufficiently small
then so is the norm.

Before stating the definition of cone-adapted Gabor shearlets, we require the following additional ingre-
dients. We consider the change of variables (£1, &) - ¥'(§) = (¥{(£), v5(£)), ¢ € {h, v}, defined by

1 1
Vi) = SsenEnel. O =2 and ¥ = ssen@d Yi© = .
2 &1 2 &
We let ', and T, denote the associated unitary operators, I', (&) = f(¥"(¢)) and T, f(¢) = f(¥"(€)). For each
orientation v or &, we define the appropriate dilation, shear, and modulation operators by

A, X=X, andS]=S;,

m

g
and if £(£,&) = g(&, &), then

ALf(6,6) = ARE,6), X, fE,6) = X186, &), and S{f(&1,6) = S8, ).

Definition 4.2. Let ¢ be an orthogonal scaling function of a 16-band multiresolution analysis in L*(R), with
associated orthonormal wavelets {y, : € = 1,...,15}, and let Ny, T € N such that w is the unit norm window
function of an %-tight Gabor frame {My,:2Tokn,w : ma, k € Z} for L*(R), with the periodization w° as
described in Theorem 4.2. Let jy € Z. Then the associated cone-adapted Gabor shearlet system is defined by

CGS)y(@ el sw) o= D) @ k€ Zlk/Nol < 277! m € 77
UL Wk € 2 2 jo.kINol <27 me Z2, = 1,..., 15} C LX(R?),
where o
= Ahyh h oo = _ = 0o —
(D?’k’m = :hAjX(ml,mﬂ/z)SZk/NOl"h(b Qw’ and CD;’k’m = :VAEX(Vm]’sz/Z)S;k/NOFVW ®¢

and accordingly

/h,[\ _ = Ahyh h - o /vjf\ _ = AVYVY v o T
le,k,m = ‘—‘hAjX(ml,m27/2)S2k/N0rhlﬁ[ ®w® and LI’].Jm = '_‘VAjX(ml,mzr/Z)SZk/Nor"W ® Yy.

For an illustration of the support of the special case of cone-adapted Shannon shearlets and the more
general cone-adapted Gabor shearlets, we refer to Figure 2.
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Figure 2: (a) Support of the cone-adapted Shannon shearlet scaling functions in the frequency domain, in horizontal and vertical orien-
tations; (b) Support of a cone-adapted Gabor shearlet scaling function in the frequency domain, corresponding to a Gabor frame with
No = 4. The smallest achievable redundancy with Ny = 4 is obtained by setting 7 = 3, resulting in No/7 = 4/3. With sufficiently large
values of Ny, and the implicit finer directional resolution, the choice T = Ny — 1 allows the redundancy to get as close to one as desired.

4.2. MRA Structure

By classical results from frame theory, without restriction of the parameters the system consisting of the
functions (I)if e (I);i m forms a tight frame.

Theorem 4.3. Let Ny € 2N, @ = 2/Ny and v € N, and let w be the unit norm window function of an %-tight
Gabor frame {M,r2Tiew : ma, k € Z} for L*(R), such that the periodization w° is a unit-norm Gabor frame
{Myye 2 Traw®} for LA([—1, 11), then the system CGS; (¢, {¢},> s w) for any jo € Z, or the system

(Whi W ik € Z,Ik/Nol <27 me 22,0 = 1,...,15)

is a unit-norm %-tight frame for L*(R?), with redundancy %
Proof. The family

{A0XE e Shm, Tile @ W« jok € Z,k/Nol <277 me 276 = 1,...,15)

is an %-tight frame for L2(C;,). Consequently, under the isometry,

(WLt = ZaAXE, oSS Tl ®0° £k € ZkINol <27 m e 22, 6= 1,....,15)

is an %-tight frame for P,(L*(R?)). Similarly,

{“’Eji,m = EVAYX ey S hn DWe @ W™ 2 ok € Z,k/Nol <27 \m e 22,0 = 1., 15}

isa @—tight frame for P,(L*(R?)). By the orthogonality of the ranges for P, and P,, the union

(P Wl ke Z,k/Nol <27 me 22,0 =1,...,15)

Jikm® = jkm

is an 22-tight frame for L,(R?). The proof for the case of CGS;, (. {¥¢}} ;w) is similar. O
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Corollary 4.2 implies that the redundancy can be chosen arbitrarily close to one.

Corollary 4.3. The redundancy % of the preceding Gabor shearlet system can be chosen arbitrarily close
to one.

5. Optimal Sparse Approximations

In this section, we show that under certain assumptions the cone-adapted Gabor shearlet system CGS (¢,
{lpg}}i 1> w) as defined in Definition 4.2 provides optimally sparse approximation of cartoon-like functions,
similar to ‘classical’ shearlets (see [11, 19]). Due to the asymptotic nature of the optimally approxima-
tion results, which involve only with shearlets with large scale j, without loss of generality, we consider
CGS; (¢, {zﬁ[}}i > w) with jo = 0 and denote the system as CGS(¥",¥"). We will first state the main result
and the core proof in the following subsection, and postpone the very technical parts of the proof to later
subsections.

5.1. Main Result

We first require the definition of cartoon-like functions. For this, we recall that in [3] E*(A) denotes the
set of cartoon-like functions f, which are C? functions away from a C? edge singularity: f = fy+ fixs, Where
fo fi € C2([0,11%) and || fllc> == Sy 10" flloo < 1 with 8 = 'y being the 2D differential operator with
order 9; = %, = %, and v = (v{, v2). More precisely, in polar coordinates, let p(6) : [0, 27) — [0, 17? be
a radius function satisfying sup, [0”(8)] < A and p < pg < 1. The set B c R? is given by B = {x € [0,1]* :
llxll2 < p(#)}. In particular, the boundary B is given by the curve in R?: 8(6) = (o(6) cos 8, p(6) sin 6).

Utilizing this notion, we can now formulate out main result concerning optimal sparse approximation of
such cartoon-like functions by our cone-adapted Gabor shearlet system as follows.

Theorem 5.1. Let f € E*(A) and fy be the N-term approximation of f from the N largest cone-adapted
Gabor shearlet coefficients {(f,'¥,) : ¥, € CGS(P", ¥")} in magnitude. Then

If = fullb < c-N7%-(logN)*.

To prove this theorem, we follow the main idea as in [3, 11]. In a nutshell, we first use a smooth partition
of unity that decomposes a cartoon-like function f into small dyadic cubes of size about 27/ x 27/, If jis large
enough, then there are only two types of dyadic cubes: one intersects with the singularity of the function,
namely, the edge fragements, and the other only contains the smooth region of the function. We then analyze
the decay property of the shearlet coefficients. Eventually, by combining the decay estimation of each dyadic
cube, we can prove Theorem 5.1.

Though the main steps are similar to [3, 11], we however would like to point out that some of the key
steps require slightly technical extensions of results in [3, 11]. For the results available in [3, 11], we simply
state them here without proof for the purpose of readability.

Let us next state some necessary auxiliary results, including Theorem 5.2 for the decay estimate with
respect to those edge fragements and Theorem 5.3 for the decay estimate with respect to those smooth regions.

An edge fragement (see Figure 3) is of the form

Fx, x2) = wo(29x1, 2722)8(x1, X2) 1 12,2 E(x)» 9]

where wy, g are smooth functions supported on [-1, 1]> and |[E”(x)| < A.
Let Q; be the collection of dyadic cubes of the form Q = [m; /27, (m; + 1)/27] X [my /2, (m, + 1)/27]. For
wo a nonnegative C* function with support in [-1, 1]%, we can define a smooth partition of unity

Z wo(x) =1, xeR?
QEQ,‘

with wo = wo(2ix) —my,27xy —my). If Q € Q; intersects with the curve singularity, then fp := fwg is an
edge fragment.
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Figure 3: An edge fragment.

Let Q% be the collection of those dyadic cubes Q € Q; such that the edge singularity intersects with the
support of wy. Then the cardinality

Q) <c-2/. )

Similarly, Q} =Q j\Q? are those cubes that do not intersect with the edge singularity. We have
Q) <c-2% +4.27, (3)
Let {s,} be a sequence. We define |s,|) to be the Nth largest entry of the {|s,|}. The weak-€¥ quasi-norm

Il - lwer of {s,} is defined to be

. 1
Isullwer 1= sup (N7 - [sulv))
N>0

which is equivalent to
1/p
I8 dhoer = (sup(l{u sl > €l E”)) :
>0

We abbreviate indices for elements in CGS(¥", ¥) and write ¥, with u = (j, k,m; ¢, £). The index set at scale
JisAji={u= (G k,m;i, &) i k € Z,lk/Nol < 27"\ me 72, =1,...,15,0 = h,v}.

Now similar to [11, Theorem 1.3], we have the following result which provides a decay estimate of the
coefficients with respect to those Q € Q(;.

Theorem 5.2. Let f € E(A) and fo := fwo. For Q € Q? with j > 0 fixed, the sequence of coefficients
{(fo,¥u) : 1 € Aj} obeys |
K for ¥illlwers < - 273772

for some constant c independent of Q and j.

Similarly, for the smooth part, we can show that the sequence of coeflicients {{fp,¥,) : 4 € A;} with
Qe Q} obeys the following estimate (c.f. [11, Theorem 1.4]).

Theorem 5.3. Let f € EX(A). For Q € Q}. with j > 0 fixed, the sequence of coefficients ({fp.¥,) : jt € A,)
obeys |
I fos ¥idllwers < ¢ 273

for some constant independent of Q and j.

The proofs of Theorems 5.2 and 5.3 are very technical and require extension of results in [3, 11]. We
therefore postpone their detailed proofs to the next two subsections. As a consequence of Theorem 5.2 and
Theorem 5.3, it is easy to show the following result.
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Corollary 5.1. Let f € E*(A) and for j > 0, let si(f) be the sequence of s;(f) = {{f, ¥, : p € Aj}. Then

s (Ollwezs < ¢

Proof. By the triangle inequality,
IsjCOIER < D 1Ko Wl 2
QEQj

2/3 2/3
< D I WL + > I for B

QeQ(} 0<Q;
0| ~—j 1| H=2j
<c l@) -2+ e Q)2

<c.

Now, we can give the decay rate of our cone-adapted Gabor shearlet coefficients as follows.

Theorem 5.4. Let f € E*(A) and s(fy =({f,¥): ¥, € CGS(Y",¥")} be the cone-adapted Gabor shearlet
coefficients associated with f. Let {|s(f)lw) : N = 1,2, ...} be the sorted sequence of the absolute values of
s(f) in descending order. Then

sup |s(Plwy < ¢- N2 (logN)*2.

fe&X(A)
o Gl _ = h Rl hyh h o~ o
Proof. From Definition 4.2, we have le,k,m = En8iim with 8ikm = AjX(ml’sz 2 2, L ne ® we. Then,

1+ 1—i X
SR+ —— RO, (&6

= HZ(&/€0)g",, (€1, &)
—_— 1 +i 1-1i
+ H(g(fz/a))(%gjf;ﬁm@z, —&) + T’gﬁﬁ n(—62,61)

=81+ 8.

W (6, 6) = HL(I +

Jok.m

For analyzing the optimal sparsity, we first consider @’},fm = g1, which can be rewritten as follows:

O (€1.6) = 7L ) e (©)
with ”
o (@) 1= HLZGME)) e~y @)mw° (214 - m) (4)

and
myr

ej’m(fyh(f)) = 2-3]/282m’m12*4.i77(§)62ni72!'yg(§). )

For simplicity, we use again the compact notation 0,(¢) := o-?k(yt(f))e (V&) with = (j,k,m; 1, €) € Aj.
The index set A at scale j is as before.
By Corollary 5.1, we have

R, =lueA;: KfO) > el <c e’

Also, A
IKf, @) < c- 27312,

Therefore, R(j, €) = 0 for j > % log,(e™"). Thus

s LW > el < D RGO < - - logy(e™),
j=0
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Repeating the steps for the second term in the definition of ‘{’];f ., Shows that we can replace @, by ‘¥,

at the cost of a change of the constant c. This can be seen from the fact that the term 1 gl?’g (&, &) +
2 S jkm
1-i ,ht

58 em(—&2,€1) is supported in the vertical cone and thus g can be viewed as composed of two quarter-
rotated elements of the form of g;. The same strategy applies to the vertical cone elements. The theorem is
proved. O

Now we can prove Theorem 5.1 using the above results.

Proof of Theorem 5.1. fy = %1, (> ¥,,)¥, where Iy is the set of indices corresponding to the N largest
entry of {|{f,¥,)| : u}. By the tight frame property and Theorem 5.4, we have

If = full? < Z Is(lEy, < c- Z N7 log(N)* < c-N7* - log(N)*.

n>N n>N
This finishes the proof of the theorem. O

5.2. Analysis of the Edge Fragments

We shall focus on proving Theorem 5.2 next. To that end, we need some auxiliary results first. From [11,
Theorem 2.2] or [3, Theorem 6.1], we have the following result, which gives the estimate of the decay of the
edge fragment in the Fourier domain along a fixed direction.

Theorem 5.5. Let f be an edge fragment as defined in (1) and I; := [2%7,227*%F] with « € {0, 1,2,3,4} and
B €{0,1,2}. Then,

f [F(Acos 6, Asin@)PdA < c-27% - (1 + 2| sin @),
el

Use Theorem 5.5, one can prove the following result (c.f. [11, Proposition 2.1]).

Corollary 5.2. Let f be an edge fragment as defined in (1). Then
f @RI (0 @)Pdé < e 2791+ K).
R

Note that although o-‘;’k(y”(f)) might not be compactly supported compared to [11, Proposition 2.1], it

does not affect the result here, since proofs related to the support of o-j k(yh(f)) can be passed through its
essential support and the estimate outside the essential supported is absorbed in the constant c¢. For elements
in the vertical cone o-f. L(7'(6)), similarly to the above result, one can show that the decay estimate is of order

less than 273/(1 + [k])~>.
From [11, Corollary 2.4] or [3, Corollary 6.6], we have the following result about the decay of the deriva-
tive of the edge fragment in the Fourier domain along a fixed direction.

Corollary 5.3. Let f be an edge fragment as defined in (1) and v = (v{,v;).Then
jl; y 10" (A cos 0, Asin )2dA < ¢, - 272 . 272" . 2747 . (1 + 27| sin6)) 5 + ¢, - 272 . 2710),
&l
We also need the following lemma (see [11, Lemma 2.5]), which follows from a direct computation.
Lemma 5.1. Let o-ik(yh(f)) be given as above. Then, for eachv = (vi,v;) € N2, vy, v, € {0, 1,2},
|67 (@) < ey - 27PHT (1 + D)™,

where [v| = v + v, and c, is independent of j and k.

Use the above results, we can prove the following result, which is an extension of [11, Proposition 2.3]
and can be proved with similar approach.
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Corollary 5.4. Let f be an edge fragment defined as in (1), O'ik(yh(f)) be defined as above, and L, be the
differential operator defined by

2\ 2\,
oo -9

where t > 0 is a fixed constant. Then

.

for some positive constant c; independent of j and k.

L (Fer " @) da < - 271 + ki)

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Fix j > 0, for simplicity, let f = fp be the edge fragment as in (1). We have

($) = [ FO0H@ - epntr O

We have
d1e;m(Y"(&) = Qmimi 2 Ysgn(£))é) — 2m—2/ ?) im(Y ().
Bem( (@) = Qrim 2 Ysgn(&)) + 2mi = 5 2’“?) eim(" (&)
+ Qrim 27 Ysgn(&))é) - 2m—21 ? Yeim" ().
Also,

mot 27
Orein(y"(©) = Qri== 2 e iy €).
Let L, be the differential operator defined in Corollary 5.4. Then,

Lejm(Y"(€)) = &1 @e;n¥"(©))

with
| Grsenen + I ¢ (G mr -
m = 1+ (———
£k T [ S ]
Let Wy be the essential support of o-?k(yh(g-“)) defined as
2 7 271 _j 2k . 2k
Wik :=4(,0):27a" <|A] <2¥b', arctan(2 f(ﬁ - 1)) < 6 < arctan(2 J(F +1)),. (6)
0 0

For € € Wy, we have |£,| ~ 2%/ and one can show that % ~ 2/ tan @ ~ k. Consequently, we can choose large
t > 0 independent of j, k, m such that ’

(my — myk)?

TS

sup (g7, = ¢

EeWik

. [1 + mg] =: ¢ - Gy(m) (7

for some positive constant ¢ independent of j, k, and m. For G;(m), we have

(1 +mp)(1 +m3) fork =0
Gi(m) = )
1+ W] [1+m3] fork#0
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Consequently,

(fi¥w = fR , J?(S)O'ik()"'(f))~ej,m(7’1(§))d§

N fR L@, (€))L (en( (©))dé

) f L(f&o’ " €))
R? g

For k # 0 and /it := (i), imy) € 72, define Ry := {m = (my,mp) € Z* : 5 € [fy, iy + 1),my = iy}, Since
for j, k fixed, {e;n(y"(¢)) : k € Z*} is an orthonormal basis for L? functions supported on W, we obtain

SR s |

meRy R2

: ej,m (Yh (6))d§

_ — 2
L(f@a, (")) P
g &

—_ — 2
L(F &0 @) de

1
< sup m—f
eWijn |gj’k(é:)|2 R?

1
= A+ i k= mD(1 + m)P fR

L(F&o,ohen| de.

By Corollary 5.4, we have
DUKEBIP <c G2 271 + k)

meR;
with Gy := (1 + (7 — m2)?)(1 + mi). For k = 0, similarly, we have G5 = (1 + ﬁﬁ)(l + ﬁag).
Let Njimu(e) :=|{m € Ry : f, ¥)| > €}]. Then N 5 (€) < ¢ - (1 + |k|) and the above inequality implies

2073 e (1 + k).

m

Nj,k,,h(e) <c-G
Thus, _
Nigw(€) < c-min(l + [k, G52 - 277 - €2 - (1 + k) ™),

which implies
2
Z Njru(e) < c- an12/3 i 23
k=—2J

Since ez G;lz/ 3 < oo, by above inequality, we obtain

2
e My KA > el D D Nigale) < c-27e?,

meZ? k=—21

which is equivalent to the conclusion that

IKfo, ¥llwen < c- 2-3j/2,

5.3. Analysis of the Smooth Region

Now, we shall focus on proving Theorem 5.3. Let us provide some lemmas first. From [3, Lemma 8.1]
or [11, Lemma 2.6], we have

Lemma 5.2. Let f = gwg, where g € E*(A) and Q € Q}. Then
| Rede < e
WM
where Wy is the essential support of O'ik(yh(f)) as in (6).
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From [11, Lemma 2.7] we have
Lemma 5.3. forv = (vi,v,) € N,

21

Dol @ < e

k=—2J

Using the above two lemmas, one can easily prove the following result, which is an extension of [11,
Lemma 2.8] and can be proved by a similar approach.

Lemma 5.4. Let f = gwp, where g € EXA)and Q € Q}. Define the differential operator L, := (tI — %A)
witht > 0and A = 6% + 6%. Then,

L3
LS —y

for some positive constant c, independent of j.

L?(J’”\(f)aik(yh(g))) : dé <¢, 271

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let f = fp = gwg and L, as defined in Lemma 5.4. We have

Liejn(Y"(€) = &5E)ejn( (@),

where . e
mi27sgn(éy) + 2T
S 52) —4j myT,;€2\2

+ 27 27 — = 9JJj=2=

e (mi2Ysgn@@né - = f%)

gre) =t +

myt 2%, A
— ) |ejim(Y' ()
2 g et E
Similar argument to the proof of Theorem 5.2, we can choose ¢ > 0 large enough so that

+(

sup [g, ()] 2 ¢ [1+27(my = mak)? + m))).
EEW ik

For i := (i, my) € Zz, define R = {m = (m,my) € 72 2_2j(m1 —mpok) € [y, m; +1),mp = in,}. Observe
that for each 77, there are only 1 + 2%/ choices for m, in R;. Hence |Rj| < 1 + 2%/, Again, similar argument
to the proof of Theorem 5.2, we have

1
DR
DUKAEIE < sup O e

meR;; EEWk

—_ — 2
L(FEct, 0@ a

_ — 2
L(F@c, o en| de.

1
<c- A
[1 +272(my — myk)® + m3)]* fRZ
Then by Lemma 5.4,

Lo o) de

27 27
> |<f,Wﬂ>|ZSc-Ga4-LZ 2

k=-2J meR k==2J
-4 ~5-10j
<c- Gy 27

where G := 1+ ﬁﬁ + m%
Using the Holder inequality

N N p/2
2 lent’ < (Z |am|2] N'"PR 12<p<2.
m=1

m=1
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Since the cardinality of R;; is bounded by 1 + 2%/, we have

27

DL DL KEWI < e @) PG 2T

k=—2J meR;
. -2
Moreover, since p > 1/2, 3 52 G, P < co. Consequently,

Z [ WP < ¢ - 2200-P275P) = . 92103p),
HEM;

In particular |
IKf, lles < - 273,
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