direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

Numerical Range
[1]
W. Boubaker, N. Moalla and A. Radl, On the joint numerical spectrum in Banach spaces, Bull. Iranian Math. Soc. 45 (2019), 345-358.
[2]
A. Radl and M. P. H. Wol ff, On the block numerical range of operators on arbitrary Banach spaces, Oper. Matrices 12 (2018), 229-252.
[3]
M. Adler, W. Dada and A. Radl, A semigroup approach to the numerical range of operators on Banach spaces, Semigroup Forum 94 (2017), 51-70.
[4]
A. Radl, The numerical range of positive operators on Banach lattices, Positivity 19 (2015), 603-623.
[5]
A. Radl, Perron-Frobenius type results for the block numerical range, Proc. Appl. Math. Mech. 14 (2014), 1001-1002.
[6]
A. Radl, C. Tretter and M. Wagenhofer, The block numerical range of analytic operator functions, Oper. Matrices 8 (2014), 901-934.
[7]
A. Radl, The numerical range of positive operators on Hilbert lattices, Integral Equ. Oper. Theory 75 (2013), 459-472.
Machine Learning
[8]
U. von Luxburg, A. Radl and M. Hein, Hitting and commute times in large random neighborhood graphs, Journal of Machine Learning Research 15 (2014), 1751-1798.
[9]
U. von Luxburg, A. Radl and M. Hein, Getting lost in space: Large sample analysis of the resistance distance, Neural Information Processing Systems (NIPS 2010), 2622-2630.
[10]
A. Radl, U. von Luxburg and M. Hein, The resistance distance is meaningless for large random geometric graphs, in E. Airoldi, J. Kleinberg, J. Leskovec, J. Tenenbaum (organizers): Analyzing Networks and Learning with Graphs, Workshop held in conjunction
with the 22nd Annual Conference on Neural Information Processing Systems (NIPS), snap.stanford.edu/nipsgraphs2009/papers/radl-paper.pdf ,2009.
[11]
H. Fernau and A. Radl, Algorithms for learning function distinguishable regular languages, SSPR and SPR 2002, LNCS 2396, pp. 64-73. Berlin, Springer-Verlag, 2002.
Queueing Theory
[12]
A. Haji and A. Radl, A semigroup approach to the Gnedenko system with single vacation of a repairman, Semigroup Forum 86 (2013), 41-58.
[13]
A. Haji and A. Radl, A semigroup approach to queueing systems, Semigroup Forum 75 (2007), 610-624.
[14]
A. Haji and A. Radl, Asymptotic stability of the solution of the M/M^B/1 queueing model, Comput. Math. Appl. 53 (2007), 1411-1420.
Transport Processes in Networks
[15]
B. Dorn, M. Kramar Fijavz, R. Nagel and A. Radl, The semigroup approach to transport processes in networks, Physica D: Nonlinear Phenomena 239 (2010), 64-73.
[16]
A. Radl, Transport processes in networks with scattering rami cation nodes, J. Appl. Funct. Anal. 3 (2008), 461-483.
Theses
[17]
A. Radl, Contributions to the numerical range and some applications of semigroup theory, Habilitationsschrift, Universitat Leipzig (2015).
[18]
A. Radl, Semigroups applied to transport and queueing processes, Dissertation, Eberhard Karls Universitat Tubingen (2006).

 

 

 

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe

Postanschrift
Technische Universität Berlin
Institut für Mathematik
Fakultät II - Mathematik und Naturwissenschaften
Sekretariat MA 1-0
Straße des 17. Juni 136
10623 Berlin