Inhalt des Dokuments
Kolloquium der Arbeitsgruppe Modellierung • Numerik • Differentialgleichungen
Verantwortliche Dozenten: |
Alle Professoren der Arbeitsgruppe Modellierung • Numerik • Differentialgleichungen |
---|---|
Koordination: |
Dr. Janusz Ginster |
Termine: | Di 16-18
Uhr in MA 313 und nach Vereinbarung |
Inhalt: | Vorträge von
Gästen und Mitarbeitern zu aktuellen
Forschungsthemen |
Kontakt: | kolloquium-mnd@math.tu-berlin.de
[1] |
Beschreibung
Das
Kolloquium der Arbeitsgruppe "Modellierung, Numerik,
Differentialgleichungen" im Institut der Mathematik ist ein
Kolloquium klassischer Art. Es wird also von einem breiten Kreis der
Mitglieder der Arbeitsgruppe besucht. Auch Studierende nach dem
Bachelorabschluss zählen schon zu den Teilnehmern unseres
Kolloquiums.
Aus diesen Gründen freuen wir uns insbesondere über Vorträge, die auf einen nicht spezialisierten Hörerkreis zugeschnitten sind und auch von Studierenden nach dem Bachelorabschuss bereits mit Profit gehört werden können.
Datum date | Zeit time | Raum room | Vortragende(r) speaker | Titel title | Einladender invited by |
---|---|---|---|---|---|
09.04.2019 | 16:15 | MA 004 | Eduardo Casas Rentería
(Universidad de Cantabria) | Colloquium in honor of the retirement of Prof. Dr. Fredi
Tröltzsch R. Schneider | |
16.04.2019 | 16:15 | MA 313 | |||
23.04.2019 | 16:15 | MA 313 | | ||
30.04.2019 | 16:15 | MA 313 | | ||
07.05.2019 | 16:15 | MA 313 | |||
14.05.2019 | 16:15 | MA 313 | |||
21.05.2019 | 16:15 | MA 313 | |||
28.05.2019 | 16:15 | MA 313 | Gitta Kutyniok (TU Berlin) | B. Zwicknagl | |
04.06.2019 | 16:15 | MA 313 | |||
11.06.2019 | 16:15 | MA 313 | Christopher Beattie (Virginia Tech) | V. Mehrmann | |
19.06.2019 (Wednesday) | 16:15 | MA 313 | Serkan Gugercin (Virginia Tech) | V. Mehrmann | |
25.06.2019 | 16:15 | MA 313 | |||
02.07.2019 | 16:15 | MA 313 | |||
09.07.2019 | 16:15 | MA 313 | Helmut Harbrecht (Universität Basel) | R.
Schneider |
Abstracts zu den Vorträgen
Eduardo Casas Rentería (Universidad de
Cantabria): Optimality Conditions in Control of
Partial Differential Equations
In this talk, I will
consider the first and second order optimality conditions for control
problems governed by partial differential equations. The first order
conditions provide some qualitative properties of the optimal
controls. They are also crucial for the numerical computation of the
solutions. The second order conditions allow to prove the stability of
the solutions with respect to small perturbations of the data and to
derive error estimates for the numerical discretization of the control
problem. Moreover, they play an important role in the analysis of the
convergence order of the computational methods. I will emphasize the
difference between the sufficient second order conditions for finite
and infinite optimization problems. I will present some well
established results along with some new ones recently proved.
Gitta Kutyniok (TU Berlin): Beating
the Curse of Dimensionality: A Theoretical Analysis of Deep Neural
Networks and Parametric PDEs
High-dimensional
parametric partial differential equations (PDEs) appear in various
contexts including control and optimization problems, inverse
problems, risk assessment, and uncertainty quantification. In most
such scenarios the set of all admissible solutions associated with the
parameter space is inherently low dimensional. This fact forms the
foundation for the so-called reduced basis method.
Recently,
numerical experiments demonstrated the remarkable efficiency of using
deep neural networks to solve parametric problems. In this talk, we
will present a theoretical justification for this class of approaches.
More precisely, we will derive upper bounds on the complexity of ReLU
neural networks approximating the solution maps of parametric PDEs. In
fact, without any knowledge of its concrete shape, we use the inherent
low-dimensionality of the solution manifold to obtain approximation
rates which are significantly superior to those provided by classical
approximation results. We use this low-dimensionality to guarantee the
existence of a reduced basis. Then, for a large variety of parametric
PDEs, we construct neural networks that yield approximations of the
parametric maps not suffering from a curse of dimensionality and
essentially only depending on the size of the reduced basis. This is
joint work with Philipp Petersen (Oxford), Mones Raslan, and Reinhold
Schneider.
Christopher Beattie (Virginia
Tech): Data-driven identification of dissipative
dynamics
System identification has evolved toward a
methodology for the construction of approximate dynamic models based
on observations of system behavior possibly conjoined with structural
constraints that the true system is expected to respect. For example,
computational models of physical systems should take into account the
manner in which systems handle energy flux and more broadly,
conservation laws, but this can be a significant challenge when models
are derived directly from system response data; observational noise
can further complicate the enterprise.
I will discuss a few
frameworks for considering energy conservation and dissipation for
dynamical systems and describe how one can ascertain whether an
observed response profile is compatible with a particular
dissipation/conservation model. This leads naturally to a data-driven
modeling framework that has features in common with classic
Nevanlinna-Pick interpolation and port-Hamiltonian modeling. The final
product is a convex parameterized family of dissipative models all of
which are consistent with observed response profiles and well-suited
for further use in design and control applications.
Serkan Gugercin (Virginia Tech):
Data-driven modeling for solving nonlinear eigenvalue problems and
estimating dispersion curves
Projection-based
methods are a common approach to model reduction in which
reduced-order quantities are obtained via explicit use of full-order
quantities. However, these full-order quantities are not always
accessible and instead a large-set of input/output data, e.g., in the
form of transfer function evaluations, are available. In this talk, we
will focus on both interpolation (Loewner) and least-squares (Vector
Fitting) frameworks to construct reduced-models directly from data. In
the former case, we will connect the data-driven modeling framework to
nonlinear eigenvalue problems and discuss how the classical
realization theory gives further insights into certain classes of
methods for nonlinear eigenvalue computations. In the Vector Fitting
framework, we will show how one can use data-driven modeling in
estimating dispersion curves in structural materials.
Helmut Harbrecht (Universität Basel):
Analytical and numerical methods in shape optimization
Shape optimization is indispensable for designing and
constructing industrial components. Many problems that arise in
application, particularly in structural mechanics and in the optimal
control of distributed parameter systems, can be formulated as the
minimization of functionals which are de- fined over a class of
admissible domains.
The application of gradient based
minimization algorithms involves the shape functionals’ derivative
with respect to the domain under consideration. Such derivatives can
analytically be computed by means of shape calculus and enable the
paradigm first optimize then discretize. Especially, by identifying
the sought domain with a parametrization of its boundary, the solution
of the shape optimization problem will be equivalent to solving a
nonlinear pseudodifferential equation for the unknown parametrization.
The present talk aims at surveying on analytical and numerical
methods for shape optimization. In particular, besides several
applications of shape optimization, the following items will be
addressed:
• first and second order optimality conditions
• discretization of shapes
• existence and convergence of
approximate shapes
• efficient numerical techniques to compute
the state equation
Rückblick
- Kolloquium ModNumDiff Winter 2018/2019 [2]
- Kolloquium ModNumDiff Sommer 2018 [3]
- Kolloquium ModNumDiff Winter 2017/2018 [4]
- Kolloquium ModNumDiff Sommer 2017 [5]
- Kolloquium ModNumDiff Winter 2016/17 [6]
- Kolloquium ModNumDiff Sommer 2016 [7]
- Kolloquium ModNumDiff Winter 2015/16 [8]
- Kolloquium ModNumDiff Sommer 2015 [9]
- Kolloquium ModNumDiff Winter 2014/15 [10]
- Kolloquium ModNumDiff Sommer 2014 [11]
- Kolloquium ModNumDiff Winter 2013/14 [12]
- Kolloquium ModNumDiff Sommer 2013 [13]
- Kolloquium ModNumDiff Winter 2012/13 [14]
- Kolloquium ModNumDiff Sommer 2012 [15]
- Kolloquium ModNumDiff Winter 2011/12 [16]
- Kolloquium ModNumDiff Sommer 2011 [17]
nfrage/parameter/de/font5/maxhilfe/id/204456/?no_cache=
1&ask_mail=YAfWHwAN97JYjfRY8n0dMOuKjrUHTH3S6URE9rEp
6z4%2BL409JsMDvw%3D%3D&ask_name=KOLLOQUIUM-MND
numdiff/kolloquium/kolloquium_ws_20182019/parameter/de/
font5/maxhilfe/
numdiff/kolloquium/kolloquium_ss_2018/parameter/de/font
5/maxhilfe/
numdiff/kolloquium/kolloquium_ws_20172018/parameter/de/
font5/maxhilfe/
numdiff/kolloquium/kolloquium_ws_20172018/parameter/de/
font5/maxhilfe/
numdiff/kolloquium/kolloquium_ws_201617/parameter/de/fo
nt5/maxhilfe/
numdiff/kolloquium/kolloquium_ss_2016/parameter/de/font
5/maxhilfe/
numdiff/kolloquium/kolloquium_ws_201516/parameter/de/fo
nt5/maxhilfe/
numdiff/kolloquium/kolloquium_ss_2015/parameter/de/font
5/maxhilfe/
dnumdiff/kolloquium/kolloquium_ws_201415/parameter/de/f
ont5/maxhilfe/
dnumdiff/kolloquium/kolloquium_ss_2014/parameter/de/fon
t5/maxhilfe/
dnumdiff/kolloquium/kolloquium_ws_201314/parameter/de/f
ont5/maxhilfe/
dnumdiff/kolloquium/kolloquium_ss_2013/parameter/de/fon
t5/maxhilfe/
dnumdiff/kolloquium/kolloquium_ws_201213/parameter/de/f
ont5/maxhilfe/
dnumdiff/kolloquium/kolloquium_ss_2012/parameter/de/fon
t5/maxhilfe/
dnumdiff/kolloquium/kolloquium_ws_201112/parameter/de/f
ont5/maxhilfe/
dnumdiff/kolloquium/kolloquium_ss_2011/parameter/de/fon
t5/maxhilfe/