Page Content
to Navigation
There is no English translation for this web page.
Journal Publications
Citation key | S-On-The-Complexity-Of-Deciding-Connectedness-And-Computing-Betti-Numbers-Of-A-Complex-Algebraic-Variety |
---|---|
Author | Peter Scheiblechner |
Pages | 359-379 |
Year | 2007 |
Journal | Journal of Complexity |
Volume | 23 |
Number | 3 |
Abstract | We extend the lower bounds on the complexity of computing Betti numbers proved in [Buergisser, Cucker] to complex algebraic varieties. More precisely, we first prove that the problem of deciding connectedness of a complex affine or projective variety given as the zero set of integer polynomials is PSPACE-hard. Then we prove FPSPACE-hardness for the more general problem of computing Betti numbers of fixed order of a complex projective variety. |