TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Page Content

to Navigation

There is no English translation for this web page.

Search for Publication

Search for publications




All Publications

Even partitions in plethysms
Citation key BCI-Even-Partitions-In-Plethysms
Author Peter Bürgisser and Matthias Christandl and Christian Ikenmeyer
Pages 322-329
Year 2011
Journal Journal of Algebra
Volume 328
Abstract We prove that for all natural numbers $k,n,d$ with $kłe d$ and every partition λ of size $kn$ with at most $k$ parts there exists an irreducible $\mathrmGL(d,\mathbb C)$-representation of highest weight $2\cdotłambda$ in the plethysm $\mathrmSym^k \mathrmSym^2n (C^d)$. This gives an affirmative answer to a conjecture by Weintraub (J. Algebra, 129 (1):103-114, 1990). Our investigation is motivated by questions of geometric complexity theory and uses ideas from quantum information theory.
Link to publication Link to original publication Download Bibtex entry

Navigation

Quick Access

Schnellnavigation zur Seite über Nummerneingabe