TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Page Content

to Navigation

There is no English translation for this web page.

Search for Publication

Search for publications




All Publications

An adaptive linear homotopy method to approximate eigenpairs of homogeneous polynomial systems
Citation key B-An-Adaptive-Linear-Homotopy-Method-To-Approximate-Eigenpairs-Of-Homogeneous-Polynomial-Systems
Author Paul Breiding
Year 2015
Month 12
Abstract Let $f=(f_1,...,f_n)$ be a system of n complex homogeneous polynomials in n variables of degree $d\ge 2$. We call $(\zeta,\eta)\in\mathbb P^n\setminus\[0:1]\$ an $h$-eigenpair of $f$ if $f(\zeta)=\eta^d−1\zeta$. We describe a randomized algorithm to compute approximations of $h$-eigenpairs of polynomial systems. Assuming random input, the average number of arithmetic operations it performs is polynomially bounded in the input size.
Link to publication Download Bibtex entry

Navigation

Quick Access

Schnellnavigation zur Seite über Nummerneingabe