Fachgebiet Algorithmische AlgebraTheses
Kohn, K. - Isotropic and Coisotropic Subvarieties of Grassmannians. Dissertation, Technische Universität Berlin 2018.
Hüttenhain, J. - Geometric complexity theory and orbit closures of homogeneous forms. Dissertation, Technische Universität Berlin 2017.
Breiding, P. - Numerical and Statistical Aspects of Tensor Decompositions. Dissertation, Technische Universität Berlin 2017.
Mengel, S. - Conjunctive Queries, Arithmetic Circuits and Counting Complexity. Dissertation, Universität Paderborn 2013.
Ikenmeyer, C. - Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients. Dissertation, Universität Paderborn 2012.
Amelunxen, D. - Geometric analysis of the condition of the convex feasibility problem. Dissertation, Universität Paderborn 2011.
Ikenmeyer, C. - On the complexity of computing Kronecker coefficients and deciding positivity of Littlewood-Richardson coefficients. Diplomarbeit, Universität Paderborn 2008.
Scheiblechner, P. - On the Complexity of Counting Irreducible Components and Computing Betti Numbers of Algebraic Varieties. Dissertation, Universität Paderborn 2007.
Lotz, M. - On Numerical Invariants in Algebraic Complexity Theory. Dissertation, Universität Paderborn 2005.
Bürgisser, P. - Completeness and Reduction in Algebraic Complexity Theory. Habilitation, Universität Zürich 1998.
Bürgisser, P. - Degenerationsordnung und Trägerfunktional bilinearer Abbildungen. Dissertation, Universität Konstanz 1990.