TU Berlin

Fachgebiet Algorithmische AlgebraDr. Christian Ikenmeyer

Inhalt des Dokuments

zur Navigation

Ehemalige Mitarbeiter

Dr. Christian Ikenmeyer

Lupe

Kontakt
University of Liverpool
Department of Computer Science
Ashton Building, Office 311
Ashton Street, Liverpool, L69 3BX
United Kingdom
 
Persönliche Homepage
http://pcwww.liv.ac.uk/~iken/

Publikationen in der Arbeitsgruppe

Permanent Versus Determinant: Not Via Saturations
Zitatschlüssel BIH-Permanent-Versus-Determinant-Not-Via-Saturations
Autor Peter Bürgisser and Christian Ikenmeyer and Jesko Hüttenhain
Seiten 1247-1258
Jahr 2016
DOI 10.1090/proc/13310
Journal Proc. AMS
Jahrgang 145
Monat 11
Zusammenfassung Let $Det_n$ denote the closure of the $\mathrm G\mathrm L(n^2,\mathbb C)$-orbit of the determinant polynomial $\det_n$ with respect to linear substitution. The highest weights (partitions) of irreducible $\mathrm G\mathrm L(n^2,\mathbb C)$-representations occurring in the coordinate ring of $Det_n$ form a finitely generated monoid $S(Det_n)$. We prove that the saturation of $S(Det_n)$ contains all partitions λ with length at most $n$ and size divisible by $n$. This implies that representation theoretic obstructions for the permanent versus determinant problem must be holes of the monoid $S(Det_n)$.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe