direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Ehemalige Mitarbeiter

Dr. Dennis Amelunxen

Lupe

Kontakt
City University of Hong Kong
Department of Mathematics
G6613 (Green Zone), 6/F Academic 1
Tat Chee Avenue, Kowloon Tong, Hong Kong
 
Persönliche Homepage
sites.google.com/site/dennisamelunxen/home

Publikationen in der Arbeitsgruppe

Probabilistic analysis of the Grassmann condition number
Zitatschlüssel AB-Probabilistic-Analysis-Of-The-Grassmann-Condition-Number
Autor Dennis Amelunxen and Peter Bürgisser
Seiten 3-51
Jahr 2015
Journal Foundations of Computational Mathematics
Jahrgang 15
Nummer 1
Monat 02
Zusammenfassung We analyze the probability that a random $m$-dimensional linear subspace of $IR^n$ both intersects a regular closed convex cone $C\subseteq IR^n$ and lies within distance α of an $m$-dimensional subspace not intersecting $C$ (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone $C$. This allows us to perform an average analysis of the Grassmann condition number $CG(A)$ for the homogeneous convex feasibility problem $\exists x\in C\setminus0:Ax=0$. The Grassmann condition number is a geometric version of Renegar's condition number, that we have introduced recently in [SIOPT 22(3):1029–1041, 2012]. We thus give the first average analysis of convex programming that is not restricted to linear programming. In particular, we prove that if the entries of $A\in IR^m× n$ are chosen i.i.d. standard normal, then for any regular cone $C$, we have $ IE[łn CG(A)]<1.5łn(n)+1.5$. The proofs rely on various techniques from Riemannian geometry applied to Grassmann manifolds.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe