TU Berlin

Fachgebiet Algorithmische AlgebraDr. Kathlén Kohn

Inhalt des Dokuments

zur Navigation

Ehemalige Mitarbeiter

Kathlén Kohn

Lupe

Anschrift
Technische Universität Berlin
Institut für Mathematik
Sekretariat MA 3-2
Straße des 17. Juni 136
10623 Berlin

Büro
Raum MA 319
Institut für Mathematik

Persönliche Homepage:
page.math.tu-berlin.de/~kohn/

Kontakt

Sekretariat
MA 3-2
Beate Nießen, Raum MA 318
+49 (0)30 314 - 25771

eMail
kohnok@outermath.tu-berlin.de

Telefon
+49 (0)30 314 - 29280
Faxgerät
+49 (0)30 314 - 25839

Sprechstunde

Während der Vorlesungszeit: Donnerstag 1100-1300

Fällt am 26.4. aus!!

Während der vorlesungsfreien Zeit: Nach Vereinbarung.

Publikationen in der Arbeitsgruppe

Voronoi cells of lattices with respect to arbitrary norms
Zitatschlüssel BK-Voronoi-Cells-Of-Lattices-With-Respect-To-Arbitrary-Norms
Autor Johannes Blömer and Kathlén Kohn
Seiten 314–338
Jahr 2018
DOI 10.1137/17M1132045
Journal SIAM J. Appl. Algebra Geom.
Jahrgang 2
Nummer 2
Monat 06
Zusammenfassung We study the geometry and complexity of Voronoi cells of lattices with respect to arbitrary norms. On the positive side, we show for strictly convex and smooth norms that the geometry of Voronoi cells of lattices in any dimension is similar to the Euclidean case, i.e., the Voronoi cells are defined by the Voronoi-relevant vectors and the facets of a Voronoi cell are in one-to-one correspondence with these vectors. On the negative side, we show that Voronoi cells are combinatorially much more complicated for arbitrary strictly convex and smooth norms than in the Euclidean case. In particular, we construct a family of three-dimensional lattices whose number of Voronoi-relevant vectors with respect to the $\ell_3$-norm is unbounded. Our result indicates that the single exponential time algorithm of Micciancio and Voulgaris for solving the shortest vector problem (SVP) and the closest vector problem (CVP) in the Euclidean norm cannot be extended to achieve deterministic single exponential time algorithms for lattice problems with respect to arbitrary $\ell_p$-norms. In fact, the algorithm of Micciancio and Voulgaris and its run time analysis crucially depend on the fact that, for the Euclidean norm, the number of Voronoi-relevant vectors is single exponential in the lattice dimension.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe