direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Ehemalige Mitarbeiter

Dr. Martin Lotz

Lupe

Kontakt
School of Mathematics
Alan Turing Building
Oxford Road
The University of Manchester
Manchester, M139PL
United Kingdom
 
Persönliche Homepage
www.maths.manchester.ac.uk/~mlotz/

Publikationen in der Arbeitsgruppe

Counting Complexity Classes for Numeric Computations III: Complex Projective Sets
Zitatschlüssel BCL-Counting-Complexity-Classes-For-Numeric-Computations-Iii-Complex-Projective-Sets
Autor Peter Bürgisser and Felipe Cucker and Martin Lotz
Seiten 351-387
Jahr 2005
Journal Foundations of Computational Mathematics
Jahrgang 5
Nummer 4
Zusammenfassung In [Bürgisser & Cucker 2004a] counting complexity classes $\#P_R$ and $\#P_C$ in the Blum-Shub-Smale setting of computations over the real and complex numbers, respectively, were introduced. One of the main results of [Bürgisser & Cucker 2004a] is that the problem to compute the Euler characteristic of a semialgebraic set is complete in the class $FP_R^R}$. In this paper, we prove that the corresponding result is true over $\mathbb C$, namely that the computation of the Euler characteristic of an affine or projective complex variety is complete in the class $FP_C^C}$. We also obtain a corresponding completeness result for the Turing model.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe