direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

There is no English translation for this web page.

Ehemalige Mitarbeiter

Prof. Dr. Martin Lotz

Lupe [1]

Mathematics Institute
Zeeman Building
University of Warwick
Coventry CV4 7AL
United Kingdom
Persönliche Homepage
http://homepages.warwick.ac.uk/staff/Martin.Lotz/ [2]

Publikationen in der Arbeitsgruppe

Coverage Processes on Spheres and Condition Numbers for Linear Programming
Citation key BCL-Coverage-Processes-On-Spheres-And-Condition-Numbers-For-Linear-Programming
Author Peter Bürgisser and Felipe Cucker and Martin Lotz
Pages 570-604
Year 2010
ISSN 0091-1798
DOI 10.1214/09-AOP489
Journal The Annals of Probability
Volume 38
Number 2
Abstract This paper has two agendas. Firstly, we exhibit new results for coverage processes. Let $p(n,m,a)$ be the probability that n spherical caps of angular radius $a$ in $S^m$ do not cover the whole sphere $S^m$. We give an exact formula for $p(n,m,a)$ in the case $ain [fracpi2,pi]$ and an upper bound for $p(n,m,a)$ in the case $ain [0,fracpi2]$, which tends to $p(n,m,fracpi2)$ when $atofracpi2$. In the case $ain [0,fracpi2]$ this yields upper bounds for the expected number of spherical caps of radius $a$ that are needed to cover $S^m$. Secondly, we study the condition number $CC(A)$ of the linear programming feasibility problem $exists xinmathbb R^m+1, Axłe 0,, xne 0$, where $Ainmathbb R^n× (m+1)$ is randomly chosen according to the standard normal distribution. We exactly determine the distribution of $CC(A)$ conditioned to $A$ being feasible and provide an upper bound on the distribution function in the infeasible case. Using these results, we show that $mathbf E(łn CC(A))łe 2łn(m+1) + 3.31$ for all $n>m$, the sharpest bound for this expectancy as of today. Both agendas are related through a result which translates between coverage and condition.
Link to publication [3] Link to original publication [4] Download Bibtex entry [5]
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.
Copyright TU Berlin 2008