TU Berlin

Fachgebiet Algorithmische AlgebraDr. Paul Breiding

Inhalt des Dokuments

zur Navigation

Ehemalige Mitarbeiter

Dr. Paul Breiding


Persönliche Homepage:

Publikationen in der Arbeitsgruppe

The condition number of join decompositions.
Zitatschlüssel BV-The-Condition-Number-Of-Join-Decompositions
Autor Paul Breiding and Nick Vannieuwenhoven
Seiten 287–309
Jahr 2018
DOI 10.1137/17M1142880
Journal SIAM J. Matrix Anal. Appl.
Jahrgang 39
Nummer 1
Monat 02
Zusammenfassung The join set of a finite collection of smooth embedded submanifolds of a mutual vector space is defined as their Minkowski sum. Join decompositions generalize some ubiquitous decompositions in multilinear algebra, namely, tensor rank, Waring, partially symmetric rank, and block term decompositions. This paper examines the numerical sensitivity of join decompositions to perturbations; specifically, we consider the condition number for general join decompositions. It is characterized as a distance to a set of ill-posed points in a supplementary product of Grassmannians. We prove that this condition number can be computed efficiently as the smallest singular value of an auxiliary matrix. For some special join sets, we characterized the behavior of sequences in the join set converging to the latter's boundary points. Finally, we specialize our discussion to the tensor rank and Waring decompositions and provide several numerical experiments confirming the key results.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe