TU Berlin

Fachgebiet Algorithmische AlgebraDr. Paul Breiding

Page Content

to Navigation

There is no English translation for this web page.

Ehemalige Mitarbeiter

Dr. Paul Breiding


Persönliche Homepage:

Publikationen in der Arbeitsgruppe

Convergence analysis of Riemannian Gauss-Newton methods and its connection with the geometric condition number
Citation key BV-Convergence-Analysis-Of-Riemannian-Gauss-Newton-Methods-And-Its-Connection-With-The-Geometric-Condition-Number
Author Paul Breiding and Nick Vannieuwenhoven
Pages 42-50
Year 2018
DOI 10.1016/j.aml.2017.10.009
Journal Appl. Math. Lett.
Volume 78
Month 04
Abstract We obtain estimates of the multiplicative constants appearing in local convergence results of the Riemannian Gauss-Newton method for least squares problems on manifolds and relate them to the geometric condition number of [P. Bürgisser and F. Cucker, Condition: The Geometry of Numerical Algorithms, 2013].
Link to publication Link to original publication Download Bibtex entry


Quick Access

Schnellnavigation zur Seite über Nummerneingabe