direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

There is no English translation for this web page.

Ehemalige Mitarbeiter

Dr. Paul Breiding

Lupe [1]

Persönliche Homepage:
https://pbrdng.github.io/index.html [2]

Publikationen in der Arbeitsgruppe

Paul Breiding and Bernd Sturmfels and Sascha Timme (2020). 3264 conics in a second [3]. Notices of the American Mathematical Society, 30–37.

Paul Breiding (2020). An Algebraic Geometry Perspective on Topological Data Analysis [4]. SIAM News, 5.

Paul Breiding and Nick Vannieuwenhoven (2019). The condition number of Riemannian approximation problems [5].

Paul Breiding and Hanieh Keneshlou and Antonio Lerario (2019). Quantitative singularity theory for random polynomials [6].

Paul Breiding (2019). How many eigenvalues of a random symmetric tensor are real? [7]. Transactions of the American Mathematical Society, 7857–7887.

Paul Breiding and Khazhgali Kozhasov and Antonio Lerario (2019). Random spectrahedra [8]. SIAM Journal on Optimization, 2608–2624.

Carlos Beltrán and Paul Breiding and Nick Vannieuwenhoven (2019). Pencil-based algorithms for tensor rank decomposition are not stable [9]. SIAM Journal on Matrix Analysis and Applications, 739–773.

Paul Breiding and Nick Vannieuwenhoven (2018). Convergence analysis of Riemannian Gauss-Newton methods and its connection with the geometric condition number [10]. Appl. Math. Lett., 42-50.

Paul Breiding and Nick Vannieuwenhoven (2018). The condition number of join decompositions. [11]. SIAM J. Matrix Anal. Appl., 287–309.

Paul Breiding and Nick Vannieuwenhoven (2017). A Riemannian Trust Region Method for the Canonical Tensor Rank Approximation Problem [12].

Paul Breiding (2017). The Expected Number of Eigenvalues of a Real Gaussian Tensor [13]. SIAM Journal on Applied Algebra and Geometry, 254-271.

Paul Breiding (2017). The average number of critical rank-one-approximations to a symmetric tensor [14].

Paul Breiding (2017). Numerical and Statistical Aspects of Tensor Decompositions [15]. Technische Universität Berlin

Paul Breiding and Peter Bürgisser (2016). Distribution of the eigenvalues of a random system of homogeneous polynomials [16]. Linear Algebra and its Applications, 88-107.

Paul Breiding (2015). An adaptive linear homotopy method to approximate eigenpairs of homogeneous polynomial systems [17].

------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.
Copyright TU Berlin 2008