direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

There is no English translation for this web page.

Wissenschaftliche Mitarbeiter

Dr. Paul Breiding

Lupe

Anschrift
Technische Universität Berlin
Institut für Mathematik
Sekretariat MA 3-2
Straße des 17. Juni 136
10623 Berlin

Büro
Raum MA 303 (3. OG)
Institut für Mathematik

Persönliche Homepage:
page.math.tu-berlin.de/~breiding/

Kontakt

Sekretariat
Beate Nießen
Raum MA 318
Tel.: +49 (0)30 314 - 25771

eMail
breidingp@outermath.tu-berlin.de

Telefon
+49 (0)30 314 - 73990
Faxgerät
+49 (0)30 314 - 25839

Sprechstunde
Während der Vorlesungszeit: Nach Vereinbarung.
Während der vorlesungsfreien Zeit: Nach Vereinbarung.

Publikationen in der Arbeitsgruppe

A Riemannian Trust Region Method for the Canonical Tensor Rank Approximation Problem
Citation key BV-A-Riemannian-Trust-Region-Method-For-The-Canonical-Tensor-Rank-Approximation-Problem
Author Paul Breiding and Nick Vannieuwenhoven
Year 2017
Month 09
Abstract The canonical tensor rank approximation problem (TAP) consists of approximating a real-valued tensor by one of low canonical rank, which is a challenging non-linear, non-convex, constrained optimization problem, where the constraint set forms a non-smooth semi-algebraic set. We introduce a Riemannian Gauss-Newton method with trust region for solving small-scale, dense TAPs. The novelty of our approach is threefold. First, we parametrize the constraint set as the Cartesian product of Segre manifolds, hereby formulating the TAP as a Riemannian optimization problem, and we argue why this parametrization is among the theoretically best possible. Second, an original ST-HOSVD-based retraction operator is proposed. Third, we introduce a hot restart mechanism that efficiently detects when the optimization process is tending to an ill-conditioned tensor rank decomposition and which often yields a quick escape path from such spurious decompositions. Numerical experiments show improvements of up to three orders of magnitude in terms of the expected time to compute a successful solution over existing state-of-the-art methods.
Link to publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.