Fachgebiet Algorithmische AlgebraDr. Paul Breiding
Paul Breiding and Bernd Sturmfels and Sascha Timme (2020). 3264 conics in a second. Notices of the American Mathematical Society, 30–37.
Paul Breiding (2020). An Algebraic Geometry Perspective on Topological Data Analysis. SIAM News, 5.
Paul Breiding and Nick Vannieuwenhoven (2019). The condition number of Riemannian approximation problems.
Paul Breiding and Hanieh Keneshlou and Antonio Lerario (2019). Quantitative singularity theory for random polynomials.
Paul Breiding (2019). How many eigenvalues of a random symmetric tensor are real?. Transactions of the American Mathematical Society, 7857–7887.
Paul Breiding and Khazhgali Kozhasov and Antonio Lerario (2019). Random spectrahedra. SIAM Journal on Optimization, 2608–2624.
Carlos Beltrán and Paul Breiding and Nick Vannieuwenhoven (2019). Pencil-based algorithms for tensor rank decomposition are not stable. SIAM Journal on Matrix Analysis and Applications, 739–773.
Paul Breiding and Nick Vannieuwenhoven (2018). Convergence analysis of Riemannian Gauss-Newton methods and its connection with the geometric condition number. Appl. Math. Lett., 42-50.
Paul Breiding and Nick Vannieuwenhoven (2018). The condition number of join decompositions.. SIAM J. Matrix Anal. Appl., 287–309.
Paul Breiding and Nick Vannieuwenhoven (2017). A Riemannian Trust Region Method for the Canonical Tensor Rank Approximation Problem.
Paul Breiding (2017). The Expected Number of Eigenvalues of a Real Gaussian Tensor. SIAM Journal on Applied Algebra and Geometry, 254-271.
Paul Breiding (2017). The average number of critical rank-one-approximations to a symmetric tensor.
Paul Breiding (2017). Numerical and Statistical Aspects of Tensor Decompositions. Technische Universität Berlin
Paul Breiding and Peter Bürgisser (2016). Distribution of the eigenvalues of a random system of homogeneous polynomials. Linear Algebra and its Applications, 88-107.
Paul Breiding (2015). An adaptive linear homotopy method to approximate eigenpairs of homogeneous polynomial systems.