TU Berlin

Fachgebiet Algorithmische AlgebraDr. Peter Scheiblechner

Inhalt des Dokuments

zur Navigation

Ehemalige Mitarbeiter

Dr. Peter Scheiblechner


Lucerne University of Applied Sciences and Arts
Technology and Architecture
Technikumstr. 21
CH-6048 Horw
Persönliche Homepage

Publikationen in der Arbeitsgruppe

On the Complexity of Counting Components of Algebraic Varieties
Zitatschlüssel BS-On-The-Complexity-Of-Counting-Components-Of-Algebraic-Varieties
Autor Peter Bürgisser and Peter Scheiblechner
Seiten 1114-1136
Jahr 2009
Journal Journal of Symbolic Computation
Jahrgang 44
Nummer 9
Zusammenfassung We give a uniform method for the two problems #CC_C and #IC_C of counting the connected and irreducible components of complex algebraic varieties, respectively. Our algorithms are purely algebraic, i.e., they use only the field structure of C. They work in parallel polynomial time, i.e., they can be implemented by algebraic circuits of polynomial depth. The design of our algorithms relies on the concept of algebraic differential forms. A further important building block is an algorithm of Szanto computing a variant of characteristic sets. Furthermore, we use these methods to obtain a parallel polynomial time algorithm for computing the Hilbert polynomial of a projective variety which is arithmetically Cohen-Macaulay.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe