TU Berlin

Fachgebiet Algorithmische AlgebraDr. Peter Scheiblechner

Inhalt des Dokuments

zur Navigation

Ehemalige Mitarbeiter

Dr. Peter Scheiblechner

Lupe

Kontakt
Lucerne University of Applied Sciences and Arts
Technology and Architecture
Technikumstr. 21
CH-6048 Horw
Switzerland
 
Persönliche Homepage
www.scheiblechner.ch

Publikationen in der Arbeitsgruppe

On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety
Zitatschlüssel S-On-The-Complexity-Of-Deciding-Connectedness-And-Computing-Betti-Numbers-Of-A-Complex-Algebraic-Variety
Autor Peter Scheiblechner
Seiten 359-379
Jahr 2007
Journal Journal of Complexity
Jahrgang 23
Nummer 3
Zusammenfassung We extend the lower bounds on the complexity of computing Betti numbers proved in [Buergisser, Cucker] to complex algebraic varieties. More precisely, we first prove that the problem of deciding connectedness of a complex affine or projective variety given as the zero set of integer polynomials is PSPACE-hard. Then we prove FPSPACE-hardness for the more general problem of computing Betti numbers of fixed order of a complex projective variety.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe