direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

There is no English translation for this web page.

Ehemalige Mitarbeiter

Prof. Dr. Kathlén Kohn


Institutionen för Matematik
Lindstedtsvägen 25
10044 Stockholm

Persönliche Homepage:

Publikationen in der Arbeitsgruppe

Coisotropic Hypersurfaces in the Grassmannian
Citation key K-Coisotropic-Hypersurfaces-In-The-Grassmannian
Author Kathlén Kohn
Year 2016
Month 7
Abstract To every projective variety $X$, we associate a family of hypersurfaces in different Grassmannians, called the coisotropic hypersurfaces of $X$. These include the Chow form and the Hurwitz form of $X$. Gel'fand, Kapranov and Zelevinsky characterized coisotropic hypersurfaces by a rank one condition on tangent spaces. We present a new and simplified proof of that result. We show that the coisotropic hypersurfaces of $X$ equal those of its projectively dual variety $X^\vee$, and that their degrees are the polar degrees of $X$. Coisotropic hypersurfaces of Segre varieties are defined by hyperdeterminants, and all hyperdeterminants arise in that manner. We derive new equations for the Cayley variety which parametrizes all coisotropic hypersurfaces of given degree in a fixed Grassmannian. We provide a \textttMacaulay2 package for transitioning between $X$ and its coisotropic hypersurfaces.
Link to publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.