Page Content
There is no English translation for this web page.
Prof. Dr. Kathlén Kohn
AnschriftInstitutionen för Matematik
KTH
Lindstedtsvägen 25
10044 Stockholm
Persönliche Homepage:
https://kathlenkohn.github.io/
Publikationen in der Arbeitsgruppe
Citation key | KNT-Secants-Bitangents-And-Their-Congruences |
---|---|
Author | Kathlén Kohn and Bernt Ivar Utstøl Nødland and Paolo Tripoli |
Title of Book | Combinatorial algebraic geometry |
Pages | 87–112 |
Year | 2017 |
DOI | 10.1007/978-1-4939-7486-3_5 |
Volume | 80 |
Month | 11 |
Publisher | Fields Inst. Res. Math. Sci., Toronto, ON |
Series | Fields Inst. Commun. |
Abstract | A congruence is a surface in the Grassmannian $\mathrmGr(1,\mathbbP^3)$ of lines in projective 3-space. To a space curve C, we associate the Chow hypersurface in $\mathrmGr(1,\mathbbP^3)$ consisting of all lines which intersect C. We compute the singular locus of this hypersurface, which contains the congruence of all secants to C. A surface S in $\mathbbP^3$ defines the Hurwitz hypersurface in $\mathrmGr(1,\mathbbP^3)$ of all lines which are tangent to S. We show that its singular locus has two components for general enough S: the congruence of bitangents and the congruence of inflectional tangents. We give new proofs for the bidegrees of the secant, bitangent and inflectional congruences, using geometric techniques such as duality, polar loci and projections. We also study the singularities of these congruences. |
Zusatzinformationen / Extras
Quick Access:
Schnellnavigation zur Seite über Nummerneingabe
Auxiliary Functions
This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.