Inhalt des Dokuments
Prof. Dr. Martin Lotz
KontaktMathematics Institute
Zeeman Building
University of Warwick
Coventry CV4 7AL
United Kingdom Persönliche Homepage
http://homepages.warwick.ac.uk/staff/Martin.Lotz/
Publikationen in der Arbeitsgruppe
Zitatschlüssel | BL-Lower-Bounds-On-The-Bounded-Coefficient-Complexity-Of-Bilinear-Maps-1 |
---|---|
Autor | Peter Bürgisser and Martin Lotz |
Buchtitel | In Proceedings of 43rd FOCS |
Seiten | 658-668 |
Jahr | 2002 |
Adresse | Vancouver |
Monat | November 16-19 |
Zusammenfassung | We prove lower bounds of order nłog n for both the problem of multiplying polynomials of degree n, and of dividing polynomials with remainder, in the model of bounded coefficient arithmetic circuits over the complex numbers. These lower bounds are optimal up to order of magnitude. The proof uses a recent idea of R. Raz [Proc.\ 34th STOC 2002] proposed for matrix multiplication. It reduces the linear problem of multiplying a random circulant matrix with a vector to the bilinear problem of cyclic convolution. We treat the arising linear problem by extending J. Morgenstern's bound [J.\ ACM 20, pp.\ 305-306, 1973] in a unitarily invariant way. This establishes a new lower bound on the bounded coefficient complexity of linear forms in terms of the singular values of the corresponding matrix. In addition, we extend these lower bounds for linear and bilinear maps to a model of circuits that allows a restricted number of unbounded scalar multiplications. |
Zusatzinformationen / Extras
Direktzugang
Schnellnavigation zur Seite über Nummerneingabe
Hilfsfunktionen
Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.