TU Berlin

Fachgebiet Algorithmische AlgebraProf. Dr. Martin Lotz

Inhalt des Dokuments

zur Navigation

Ehemalige Mitarbeiter

Prof. Dr. Martin Lotz


Mathematics Institute
Zeeman Building
University of Warwick
Coventry CV4 7AL
United Kingdom
Persönliche Homepage

Publikationen in der Arbeitsgruppe

Counting Complexity Classes for Numeric Computations III: Complex Projective Sets
Zitatschlüssel BCL-Counting-Complexity-Classes-For-Numeric-Computations-Iii-Complex-Projective-Sets
Autor Peter Bürgisser and Felipe Cucker and Martin Lotz
Seiten 351-387
Jahr 2005
Journal Foundations of Computational Mathematics
Jahrgang 5
Nummer 4
Zusammenfassung In [Bürgisser & Cucker 2004a] counting complexity classes $\#P_R$ and $\#P_C$ in the Blum-Shub-Smale setting of computations over the real and complex numbers, respectively, were introduced. One of the main results of [Bürgisser & Cucker 2004a] is that the problem to compute the Euler characteristic of a semialgebraic set is complete in the class $FP_R^R}$. In this paper, we prove that the corresponding result is true over $\mathbb C$, namely that the computation of the Euler characteristic of an affine or projective complex variety is complete in the class $FP_C^C}$. We also obtain a corresponding completeness result for the Turing model.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe