direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Leitung

Prof. Dr. Peter Bürgisser

Lupe

Anschrift
Technische Universität Berlin
Institut für Mathematik
Sekretariat MA 3-2
Straße des 17. Juni 136
10623 Berlin

Büro
Raum MA 317 (3. OG)
Institut für Mathematik

Kontakt

Sekretariat
Beate Nießen
Raum MA 318
Tel.: +49 (0)30 314 - 25771

eMail
peter.buergisser@offmath.tu-berlin.de

Telefon
+49 (0)30 314 - 75902
Faxgerät
+49 (0)30 314 - 25839

Sprechstunde
Während der Vorlesungszeit: Do, 15-16 Uhr.
Während der vorlesungsfreien Zeit: nach Vereinbarung.

Publikationen

Condition of intersecting a projective variety with a varying linear subspace
Zitatschlüssel B-Condition-Of-Intersecting-A-Projective-Variety-With-A-Varying-Linear-Subspace
Autor Peter Bürgisser
Seiten 111–125
Jahr 2017
DOI 10.1137/16M1077222
Journal SIAM Journal on Applied Algebra and Geometry
Jahrgang 1
Nummer 1
Monat 10
Zusammenfassung The numerical condition of the problem of intersecting a fixed $m$-dimensional irreducible complex projective variety $Z\subseteq\mathbbP^n$ with a varying linear subspace $L\subseteq\mathbbP^n$ of complementary dimension $s=n-m$ is studied. We define the intersection condition number $\kappa_Z(L,z)$ at a smooth intersection point $z\in Z\cap L$ as the norm of the derivative of the locally defined solution map $\mathbbG(s,\mathbbP^n)\to\mathbbP^n,\,L\mapsto z$. We show that $\kappa_Z(L,z)=1/\sin\alpha$, where α is the minimum angle between the tangent spaces $T_zZ$ and $T_zL$. From this, we derive a condition number theorem that expresses $1/\kappa_Z(L,z)$ as the distance of $L$ to the local Schubert variety, which consists of the linear subspaces having an ill-posed intersection with $Z$ at $z$. A probabilistic analysis of the maximum condition number $\kappa_Z(L):=\max\kappa_Z(L,z_i)$, taken over all intersection points $z_i\in Z\cap L$, leads to the study of the volume of tubes around the Hurwitz hypersurface $\Sigma(Z)$. As a first step toward this, we express the volume of $\Sigma(Z)$ in terms of its degree.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.