direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Leitung

Prof. Dr. Peter Bürgisser

Lupe

Anschrift
Technische Universität Berlin
Institut für Mathematik
Sekretariat MA 3-2
Straße des 17. Juni 136
10623 Berlin

Büro
Raum MA 317 (3. OG)
Institut für Mathematik

Kontakt

Sekretariat
Beate Nießen
Raum MA 318
Tel.: +49 (0)30 314 - 25771

eMail
peter.buergisser@offmath.tu-berlin.de

Telefon
+49 (0)30 314 - 75902
Faxgerät
+49 (0)30 314 - 25839

Sprechstunde
Während der Vorlesungszeit: Do, 15-16 Uhr.
Während der vorlesungsfreien Zeit: nach Vereinbarung.

Publikationen

Nonarchimedean integral geometry
Citation key BKL-Nonarchimedean-integral-geometry
Author Peter Bürgisser and Avinash Kulkarni and Antonio Lerario
Year 2022
Month 06
Abstract Let K be a nonarchimedean local field of characteristic zero with valuation ring R, for instance, K=ℚp and R=ℤp. We introduce the concept of an R-structure on a K-analytic manifold, which is akin to the notion of a Riemannian metric on a smooth manifold. An R-structure determines a norm and volume form on the tangent spaces of a K-analytic manifold, which allows one to integrate real valued functions on the manifold. We prove such integrals satisfy a nonarchimedean version of Sard's lemma and the coarea formula. We also consider R-structures on K-analytic groups and homogeneous K-analytic spaces that are compatible with the group operations. In this framework, we prove a general integral geometric formula analogous to the corresponding result over the reals. This generalizes the p-adic integral geometric formula for projective spaces recently discovered by Kulkarni and Lerario, e.g., to the setting of Grassmannians. As a first application, we compute the volume of special Schubert varieties and we outline the construction of a probabilistic nonarchimedean Schubert Calculus. As a second application we bound, and in some cases exactly determine, the expected number of zeros in K of random fewnomial systems.
Link to publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.