Page Content
Sprechstunde
Während der Vorlesungszeit: Do, 15-16 Uhr.
Während der vorlesungsfreien Zeit: nach Vereinbarung.
Während der Vorlesungszeit: Do, 15-16 Uhr.
Während der vorlesungsfreien Zeit: nach Vereinbarung.
Publikationen
Citation key | BB-The-Real-Tau-Conjecture-Is-True-On-Average |
---|---|
Author | Iréné Briquel and Peter Bürgisser |
Year | 2020 |
DOI | 10.1002/rsa.20926 |
Journal | Random Structures & Algortihms |
Note | This is an online version before inclusion in an issue of the journal. |
Abstract | Koiran's real τ-conjecture claims that the number of real zeros of a structured polynomial given as a sum of $m$ products of $k$ real sparse polynomials, each with at most $t$ monomials, is bounded by a polynomial in $m,k,t$. This conjecture has a major consequence in complexity theory since it would lead to superpolynomial bounds for the arithmetic circuit size of the permanent. We confirm the conjecture in a probabilistic sense by proving that if the coefficients involved in the description of $f$ are independent standard Gaussian random variables, then the expected number of real zeros of $f$ is $O(mk^2t)$. |
Zusatzinformationen / Extras
Quick Access:
Schnellnavigation zur Seite über Nummerneingabe
Auxiliary Functions
This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.