TU Berlin

Fachgebiet Algorithmische AlgebraProf. Dr. Peter Bürgisser

Inhalt des Dokuments

zur Navigation

Leitung

Prof. Dr. Peter Bürgisser

Lupe

Anschrift
Technische Universität Berlin
Institut für Mathematik
Sekretariat MA 3-2
Straße des 17. Juni 136
10623 Berlin

Büro
Raum MA 317 (3. OG)
Institut für Mathematik

Kontakt

Sekretariat
Beate Nießen
Raum MA 318
Tel.: +49 (0)30 314 - 25771

eMail
peter.buergisser@offmath.tu-berlin.de

Telefon
+49 (0)30 314 - 75902
Faxgerät
+49 (0)30 314 - 25839

Sprechstunde
Während der Vorlesungszeit: Do, 15-16 Uhr.
Während der vorlesungsfreien Zeit: nach Vereinbarung.

Publikationen

Degenerationsordnung und Trägerfunktional bilinearer Abbildungen
Zitatschlüssel B-Degenerationsordnung-Und-Tragerfunktional-Bilinearer-Abbildungen
Autor Peter Bürgisser
Jahr 1990
Notiz Konstanzer Schriften in Mathematik und Informatik, Nr. 46
Schule Universität Konstanz
Zusammenfassung We investigate various topics in the area of complexity and deformation theory of bilinear maps and answer some questions posed by V. Strassen in his papers [The asymptotic spectrum of tensors, J. reine angew. Math., 384:102–152] and [Degeneration and complexity of bilinear maps. J. reine angew. Math., 413:127–180]. The upper and lower support functionals yield points in the asymptotic spectrum associated with a set of bilinear maps, thus giving necessary conditions for degenerations. We determine the asymptotic growth of the value of the lower support functional on a generic bilinear map of n-dimensional spaces. We then use this to show that, in contrast to the upper support functional, the lower support functional is not additive. Strassen's theory of asymptotic spectra is based on the discovery that the asymptotic preorder allows an extension from the semiring of equivalence classes of bilinear maps to its Grothendieck ring. We prove that the degeneration order does not allow such an extension. In the last section, we study a question in the general setting of a linear algebraic group $G$ operating on a vector space $V$ over a field $k$. For objects in $V$ we define $k$-degeneration $<_k$, $k$-isomorphy $\sim_k$, and isomorphy ~ (defined with respect to the algebraic closure of $k$). We investigate the so-called strong partial order property (SPE): $d <_k f$, $d \sim f$ ⟶ $d \sim_k f$. We prove that (SPE) is always true if $k$ is algebraically closed, real closed, or a $p$-adic field. Moreover, we show that (SPE) is true if $G$ is a torus. We verify (SPE) for the operation of $\mathrmGl(n,k)$ on quadratic forms over finite fields $k$ and over the rationals. Finally, in the setting of bilinear maps, we are able to show that the implication of (SPE) is true for certain direct sums of matrix multiplications.
Typ der Publikation Dissertation
Link zur Publikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe