direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Search for Publication

Suche nach Publikationen




All Publications

Hauenstein, J. D., Ikenmeyer, C. and Landsberg, J. M. - Equations for lower bounds on border rank. Experimental Mathematics 22(4) pp. 372–383, 2013.


Mengel, S. - Arithmetic Branching Programs with Memory. Mathematical foundations of computer science 2013 8087 pp. 667-678, . Springer, Heidelberg, 2013.


Capelli, F., Durand, A. and Mengel, S. - The arithmetic complexity of tensor contractions. Proceedings Symposium on Theoretical Aspects of Computer Science (STACS) 2013 , 2013.


Durand, A. and Mengel, S. - Structural Tractability of Counting of Solutions to Conjunctive Queries. Proceeding of the 16th International Conference on Database Theory (ICDT 2013) , 2013.


Bürgisser, P. and Ikenmeyer, C. - Explicit Lower Bounds via Geometric Complexity Theory. Proceedings 45th ACM Symposium on Theory of Computing pp. 141-150, 2013.


Bürgisser, P. and Ikenmeyer, C. - Deciding Positivity of Littlewood-Richardson coefficients. SIAM J. Discrete Math. 27(4) pp. 1639-1681, 2013.


Mengel, S. - Conjunctive Queries, Arithmetic Circuits and Counting Complexity. Dissertation, Universität Paderborn 2013.


Amelunxen, D. and Bürgisser, P. - Intrinsic volumes of symmetric cones, Preprint 2012. A substantially revised and shortened version of this preprint has been published in Mathematical Programming 149(1-2) pp. 105-130, 2015.


Fournier, H., Malod, G. and Mengel, S. - Monomials in arithmetic circuits: Complete problems in the counting hierarchy. Proceedings Symposium on Theoretical Aspects of Computer Science (STACS) 2012 , 2012.


Amelunxen, D. and Bürgisser, P. - A coordinate-free condition number for convex programming. SIAM Journal on Optimization 22(3) pp. 1029-1041, 2012.


Bürgisser, P. and Amelunxen, D. - Robust Smoothed Analysis of a Condition Number for Linear Programming. Mathematical Programming 131(1-2, Ser. A) pp. 221-251, 2012.


Ikenmeyer, C. - Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients. Dissertation, Universität Paderborn 2012.


Mengel, S. - Characterizing Arithmetic Circuit Classes by Constraint Satisfaction Problems. In Proceedings of ICALP 2011 Lecture Notes in Computer Science 6755 pp. 700-711, . Springer, 2011.


Bürgisser, P. and Ikenmeyer, C. - Geometric Complexity Theory and Tensor Rank. Proceedings 43rd Annual ACM Symposium on Theory of Computing 2011 pp. 509-518, 2011.


Bürgisser, P., Christandl, M. and Ikenmeyer, C. - Even partitions in plethysms. Journal of Algebra 328 pp. 322-329, 2011.


Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe