direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Search for Publication

Suche nach Publikationen




All Publications

The complexity of semilinear problems in succinct representation
Zitatschlüssel BCN-The-Complexity-Of-Semilinear-Problems-In-Succinct-Representation-1
Autor Peter Bürgisser and Felipe Cucker and Paulin Jacobé de Naurois
Buchtitel Proceedings of 15th International Symposium on Fundamentals of Computation Theory
Seiten 479-490
Jahr 2005
Adresse Lübeck
Nummer 3623
Monat August 17-20
Verlag Springer
Serie Lecture Notes in Computer Science
Zusammenfassung We prove completeness results for twenty three problems in semilinear geometry. These results involve semilinear sets given by additive circuits as input data. If arbitrary real constants are allowed in the circuit, the completeness results are for the Blum-Shub-Smale additive model of computation. If, in contrast, the circuit is constant-free, then the completeness results are for the Turing model of computation. One such result, the P^NP[log]-completeness of deciding Zariski irreducibility, exhibits for the first time a problem with a geometric nature complete in this class.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe