Zitatschlüssel |
BKLS-Computing-The-Chow-Variety-Of-Quadratic-Space-Curves |
Autor |
Peter Bürgisser and Kathlén Kohn and Pierre Lairez and Bernd Sturmfels |
Buchtitel |
Mathematical Aspects of Computer and Information Sciences (eds. I. Kotsireas, S. Rump and C. Yap) - MACIS 2015, Berlin, Germany, November 11-13, Revised Selected Papers |
Seiten |
130-136 |
Jahr |
2016 |
DOI |
10.1007/978-3-319-32859-1_10 |
Monat |
4 |
Zusammenfassung |
Quadrics in the Grassmannian of lines in 3-space form a 19-dimensional projective space. We study the subvariety of coisotropic hypersurfaces. Following Gel'fand, Kapranov and Zelevinsky, it decomposes into Chow forms of plane conics, Chow forms of pairs of lines, and Hurwitz forms of quadric surfaces. We compute the ideals of these loci. |