direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Journal Publications

On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety
Zitatschlüssel S-On-The-Complexity-Of-Deciding-Connectedness-And-Computing-Betti-Numbers-Of-A-Complex-Algebraic-Variety
Autor Peter Scheiblechner
Seiten 359-379
Jahr 2007
Journal Journal of Complexity
Jahrgang 23
Nummer 3
Zusammenfassung We extend the lower bounds on the complexity of computing Betti numbers proved in [Buergisser, Cucker] to complex algebraic varieties. More precisely, we first prove that the problem of deciding connectedness of a complex affine or projective variety given as the zero set of integer polynomials is PSPACE-hard. Then we prove FPSPACE-hardness for the more general problem of computing Betti numbers of fixed order of a complex projective variety.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe