TU Berlin

Fachgebiet Algorithmische AlgebraJournal Publications

Inhalt des Dokuments

zur Navigation

Journal Publications

Counting Complexity Classes for Numeric Computations III: Complex Projective Sets
Zitatschlüssel BCL-Counting-Complexity-Classes-For-Numeric-Computations-Iii-Complex-Projective-Sets
Autor Peter Bürgisser and Felipe Cucker and Martin Lotz
Seiten 351-387
Jahr 2005
Journal Foundations of Computational Mathematics
Jahrgang 5
Nummer 4
Zusammenfassung In [Bürgisser & Cucker 2004a] counting complexity classes $\#P_R$ and $\#P_C$ in the Blum-Shub-Smale setting of computations over the real and complex numbers, respectively, were introduced. One of the main results of [Bürgisser & Cucker 2004a] is that the problem to compute the Euler characteristic of a semialgebraic set is complete in the class $FP_R^R}$. In this paper, we prove that the corresponding result is true over $\mathbb C$, namely that the computation of the Euler characteristic of an affine or projective complex variety is complete in the class $FP_C^C}$. We also obtain a corresponding completeness result for the Turing model.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe