TU Berlin

Fachgebiet Algorithmische AlgebraJournal Publications

Inhalt des Dokuments

zur Navigation

Journal Publications

Membership in moment polytopes is in NP and coNP
Zitatschlüssel BCMW-Membership-In-Moment-Polytopes-Is-In-Np-And-Conp
Autor Peter Bürgisser and Matthias Christandl and Ketan D. Mulmuley and Michael Walter
Seiten 972-991
Jahr 2017
DOI 10.1137/15M1048859
Journal SIAM Journal on Computing
Jahrgang 46
Nummer 3
Monat 06
Zusammenfassung We show that the problem of deciding membership in the moment polytope associated with a finite-dimensional unitary representation of a compact, connected Lie group is in NP and coNP. This is the first non-trivial result on the computational complexity of this problem, which naively amounts to a quadratically-constrained program. Our result applies in particular to the Kronecker polytopes, and therefore to the problem of deciding positivity of the stretched Kronecker coefficients. In contrast, it has recently been shown that deciding positivity of a single Kronecker coefficient is NP-hard in general [Ikenmeyer, Mulmuley and Walter, arXiv:1507.02955]. We discuss the consequences of our work in the context of complexity theory and the quantum marginal problem.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe