direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Search for Publication

Suche nach Publikationen




All Publications

On the Complexity of Numerical Analysis (Conference Version)
Zitatschlüssel ABKM-On-The-Complexity-Of-Numerical-Analysis-Conference-Version
Autor Eric Allender and Peter Bürgisser and Johan Kjeldgaard-Pedersen and Peter Bro Miltersen
Buchtitel In Proc. of 21st Ann. IEEE Conference on Computational Complexity
Seiten 331-339
Jahr 2006
Adresse Prague
Zusammenfassung We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis. We show that both hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a division-free straight-line program producing an integer $N$, decide whether $N>0$. We show that PosSLP lies in the counting hierarchy, and we show that if $A$ is any language in the Boolean part of $P_R$ accepted by a machine whose machine constants are algebraic real numbers, then $A \in $P^textPosSLP$. Combining our results with work of Tiwari, we show that the Euclidean Traveling Salesman Problem lies in the counting hierarchy – the previous best upper bound for this important problem (in terms of classical complexity classes) being PSPACE.
Link zur Publikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.