TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen

All Publications

The computational complexity to evaluate representations of general linear groups
Zitatschlüssel B-The-Computational-Complexity-To-Evaluate-Representations-Of-General-Linear-Groups-1
Autor Peter Bürgisser
Buchtitel In Proc. 10th International Conference on Formal Power Series and Algebraic Combinatorics
Seiten 115-126
Jahr 1998
Adresse Toronto
Zusammenfassung We describe a fast algorithm to evaluate irreducible matrix representations of general linear groups $\mathrmGL(m,\mathbb C)$ with respect to a symmetry adapted basis (Gelfand-Tsetlin basis). This is complemented by a lower bound, which shows that our algorithm is optimal up to a factor $m^2$ with regard to nonscalar complexity. Our algorithm can be used for the fast evaluation of special functions: for instance, we obtain an $O(l łog l)$ algorithm to evaluate all associated Legendre functions of degree $l$. As a further application we obtain an algorithm to evaluate immanants, which is faster than previous algorithms due to Hartmann and Barvinok.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe