TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen

All Publications

On the Number of Real Zeros of Random Fewnomials
Zitatschlüssel BET-On-the-Number-of-Real-Zeros-of-Random-Fewnomials
Autor Peter Bürgisser and Alperen A. Ergür and Josué Tonelli-Cueto
Seiten 721–732
Jahr 2019
DOI 10.1137/18M1228682
Journal SIAM Journal on Applied Algebra and Geometry
Jahrgang 3
Nummer 4
Zusammenfassung Consider a system $f_1(x)=0,łdots,f_n(x)=0$ of $n$ random real polynomial equations in $n$ variables, where each $f_i$ has a prescribed set of exponent vectors described by a set $A\subseteq \mathbbN^n$ of cardinality $t$. Assuming that the coefficients of the $f_i$ are independent Gaussians of any variance, we prove that the expected number of zeros of the random system in the positive orthant is bounded from above by $\frac12^n-1\binomtn$.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe