Inhalt des Dokuments
All Publications
Zitatschlüssel | BV-A-Riemannian-Trust-Region-Method-For-The-Canonical-Tensor-Rank-Approximation-Problem |
---|---|
Autor | Paul Breiding and Nick Vannieuwenhoven |
Jahr | 2017 |
Monat | 09 |
Zusammenfassung | The canonical tensor rank approximation problem (TAP) consists of approximating a real-valued tensor by one of low canonical rank, which is a challenging non-linear, non-convex, constrained optimization problem, where the constraint set forms a non-smooth semi-algebraic set. We introduce a Riemannian Gauss-Newton method with trust region for solving small-scale, dense TAPs. The novelty of our approach is threefold. First, we parametrize the constraint set as the Cartesian product of Segre manifolds, hereby formulating the TAP as a Riemannian optimization problem, and we argue why this parametrization is among the theoretically best possible. Second, an original ST-HOSVD-based retraction operator is proposed. Third, we introduce a hot restart mechanism that efficiently detects when the optimization process is tending to an ill-conditioned tensor rank decomposition and which often yields a quick escape path from such spurious decompositions. Numerical experiments show improvements of up to three orders of magnitude in terms of the expected time to compute a successful solution over existing state-of-the-art methods. |
Zurück [3]
g/fachgebiet_algorithmische_algebra/v_menue/publication
s/parameter/de/font5/maxhilfe/?no_cache=1&tx_sibibt
ex_pi1%5Bdownload_bibtex_uid%5D=1350994&tx_sibibtex
_pi1%5Bcontentelement%5D=tt_content%3A541745
g/fachgebiet_algorithmische_algebra/v_menue/publication
s/parameter/de/font5/maxhilfe/
Zusatzinformationen / Extras
Direktzugang
Schnellnavigation zur Seite über Nummerneingabe
Hilfsfunktionen
Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008