Zusammenfassung |
Smale's 17th problem asks for an algorithm which finds an approximate zero of polynomial systems in average polynomial time (see Smale 2000). The main progress on Smale's problem is Beltrán-Pardo (2011) and Bürgisser-Cucker (2010). In this paper we will improve on both approaches and we prove an important intermediate result. Our main results are Theorem 1 on the complexity of a randomized algorithm which improves the result of Beltrán-Pardo (2011), Theorem 2 on the average of the condition number of polynomial systems which improves the estimate found in Bürgisser-Cucker (2010), and Theorem 3 on the complexity of finding a single zero of polynomial systems. This last Theorem is the main result of Bürgisser-Cucker (2010). We give a proof of it relying only on homotopy methods, thus removing the need for the elimination theory methods used in Bürgisser-Cucker (2010). We build on methods developed in Armentano et al. (2015). |