TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen

All Publications

Secants, bitangents, and their congruences
Zitatschlüssel KNT-Secants-Bitangents-And-Their-Congruences
Autor Kathlén Kohn and Bernt Ivar Utstøl Nødland and Paolo Tripoli
Buchtitel Combinatorial algebraic geometry
Seiten 87–112
Jahr 2017
DOI 10.1007/978-1-4939-7486-3_5
Jahrgang 80
Monat 11
Verlag Fields Inst. Res. Math. Sci., Toronto, ON
Serie Fields Inst. Commun.
Zusammenfassung A congruence is a surface in the Grassmannian $\mathrmGr(1,\mathbbP^3)$ of lines in projective 3-space. To a space curve C, we associate the Chow hypersurface in $\mathrmGr(1,\mathbbP^3)$ consisting of all lines which intersect C. We compute the singular locus of this hypersurface, which contains the congruence of all secants to C. A surface S in $\mathbbP^3$ defines the Hurwitz hypersurface in $\mathrmGr(1,\mathbbP^3)$ of all lines which are tangent to S. We show that its singular locus has two components for general enough S: the congruence of bitangents and the congruence of inflectional tangents. We give new proofs for the bidegrees of the secant, bitangent and inflectional congruences, using geometric techniques such as duality, polar loci and projections. We also study the singularities of these congruences.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe