TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen




All Publications

Hauenstein, J. D., Ikenmeyer, C. and Landsberg, J. M. - Equations for lower bounds on border rank. Experimental Mathematics 22(4) pp. 372–383, 2013.


Mengel, S. - Arithmetic Branching Programs with Memory. Mathematical foundations of computer science 2013 8087 pp. 667-678, . Springer, Heidelberg, 2013.


Capelli, F., Durand, A. and Mengel, S. - The arithmetic complexity of tensor contractions. Proceedings Symposium on Theoretical Aspects of Computer Science (STACS) 2013 , 2013.


Durand, A. and Mengel, S. - Structural Tractability of Counting of Solutions to Conjunctive Queries. Proceeding of the 16th International Conference on Database Theory (ICDT 2013) , 2013.


Bürgisser, P. and Ikenmeyer, C. - Explicit Lower Bounds via Geometric Complexity Theory. Proceedings 45th ACM Symposium on Theory of Computing pp. 141-150, 2013.


Bürgisser, P. and Ikenmeyer, C. - Deciding Positivity of Littlewood-Richardson coefficients. SIAM J. Discrete Math. 27(4) pp. 1639-1681, 2013.


Mengel, S. - Conjunctive Queries, Arithmetic Circuits and Counting Complexity. Dissertation, Universität Paderborn 2013.


Amelunxen, D. and Bürgisser, P. - Intrinsic volumes of symmetric cones, Preprint 2012. A substantially revised and shortened version of this preprint has been published in Mathematical Programming 149(1-2) pp. 105-130, 2015.


Fournier, H., Malod, G. and Mengel, S. - Monomials in arithmetic circuits: Complete problems in the counting hierarchy. Proceedings Symposium on Theoretical Aspects of Computer Science (STACS) 2012 , 2012.


Amelunxen, D. and Bürgisser, P. - A coordinate-free condition number for convex programming. SIAM Journal on Optimization 22(3) pp. 1029-1041, 2012.


Bürgisser, P. and Amelunxen, D. - Robust Smoothed Analysis of a Condition Number for Linear Programming. Mathematical Programming 131(1-2, Ser. A) pp. 221-251, 2012.


Ikenmeyer, C. - Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients. Dissertation, Universität Paderborn 2012.


Mengel, S. - Characterizing Arithmetic Circuit Classes by Constraint Satisfaction Problems. In Proceedings of ICALP 2011 Lecture Notes in Computer Science 6755 pp. 700-711, . Springer, 2011.


Bürgisser, P. and Ikenmeyer, C. - Geometric Complexity Theory and Tensor Rank. Proceedings 43rd Annual ACM Symposium on Theory of Computing 2011 pp. 509-518, 2011.


Bürgisser, P., Christandl, M. and Ikenmeyer, C. - Even partitions in plethysms. Journal of Algebra 328 pp. 322-329, 2011.


Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe