TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen




All Publications

The real tau-conjecture is true on average
Zitatschlüssel BB-The-Real-Tau-Conjecture-Is-True-On-Average
Autor Iréné Briquel and Peter Bürgisser
Jahr 2018
Monat 06
Zusammenfassung Koiran's real τ-conjecture claims that the number of real zeros of a structured polynomial given as a sum of $m$ products of $k$ real sparse polynomials, each with at most $t$ monomials, is bounded by a polynomial in $m,k,t$. This conjecture has a major consequence in complexity theory since it would lead to superpolynomial bounds for the arithmetic circuit size of the permanent. We confirm the conjecture in a probabilistic sense by proving that if the coefficients involved in the description of $f$ are independent standard Gaussian random variables, then the expected number of real zeros of $f$ is $O(mkt)$, which is linear in the number of parameters.
Link zur Publikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe