TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen

All Publications

Nonvanishing of Kronecker coefficients for rectangular shapes
Zitatschlüssel BCI-Nonvanishing-Of-Kronecker-Coefficients-For-Rectangular-Shapes
Autor Peter Bürgisser and Matthias Christandl and Christian Ikenmeyer
Seiten 2082-2091
Jahr 2011
Journal Advances in Mathematics
Jahrgang 227
Zusammenfassung We prove that for any partition $(łambda_1,...,łambda_d^2)$ of size $\ell d$ there exists $k\ge 1$ such that the tensor square of the irreducible representation of the symmetric group $S_k\ell d$ with respect to the rectangular partition $(k\ell,...,k\ell)$ contains the irreducible representation corresponding to the stretched partition $(kłambda_1,...,kłambda_d^2)$. We also prove a related approximate version of this statement in which the stretching factor $k$ is effectively bounded in terms of $d$. This investigation is motivated by questions of geometric complexity theory.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe