TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen




All Publications

On the Complexity of Numerical Analysis
Zitatschlüssel ABKM-On-The-Complexity-Of-Numerical-Analysis
Autor Eric Allender and Peter Bürgisser and Johan Kjeldgaard-Pedersen and Peter Bro Miltersen
Seiten 1987-2006
Jahr 2009
Journal SIAM J. Comput.
Jahrgang 38
Nummer 5
Zusammenfassung We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis. We show that both hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a division-free straight-line program producing an integer $N$, decide whether $N>0$. We show that PosSLP lies in the counting hierarchy, and we show that if $A$ is any language in the Boolean part of $P_R$ accepted by a machine whose machine constants are algebraic real numbers, then $A \in $P^textPosSLP$. Combining our results with work of Tiwari, we show that the Euclidean Traveling Salesman Problem lies in the counting hierarchy – the previous best upper bound for this important problem (in terms of classical complexity classes) being PSPACE.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe