TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen

All Publications

Lower Bounds on the Bounded Coefficient Complexity of Bilinear Maps
Zitatschlüssel BL-Lower-Bounds-On-The-Bounded-Coefficient-Complexity-Of-Bilinear-Maps
Autor Peter Bürgisser and Martin Lotz
Seiten 464-482
Jahr 2004
Journal Journal of the ACM
Jahrgang 51
Nummer 3
Zusammenfassung We prove lower bounds of order $nłog n$ for both the problem of multiplying polynomials of degree $n$, and of dividing polynomials with remainder, in the model of bounded coefficient arithmetic circuits over the complex numbers. These lower bounds are optimal up to order of magnitude. The proof uses a recent idea of R. Raz [Proc.\ 34th STOC 2002] proposed for matrix multiplication. It reduces the linear problem of multiplying a random circulant matrix with a vector to the bilinear problem of cyclic convolution. We treat the arising linear problem by extending J. Morgenstern's bound [J.\ ACM 20, pp.\ 305-306, 1973] in a unitarily invariant way. This establishes a new lower bound on the bounded coefficient complexity of linear forms in terms of the singular values of the corresponding matrix. In addition, we extend these lower bounds for linear and bilinear maps to a model of circuits that allows a restricted number of unbounded scalar multiplications.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe