TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen

All Publications

Equations for lower bounds on border rank
Zitatschlüssel HIL-Equations-For-Lower-Bounds-On-Border-Rank
Autor Jonathan David Hauenstein and Christian Ikenmeyer and Joseph Montague Landsberg
Seiten 372–383
Jahr 2013
DOI 10.1080/10586458.2013.825892
Journal Experimental Mathematics
Jahrgang 22
Nummer 4
Zusammenfassung We present new methods for determining polynomials in the ideal of the variety of bilinear maps of border rank at most $r$. We apply these methods to several cases including the case $r = 6$ in the space of bilinear maps $\mathbb C^4 × \mathbb C^4 \to \mathbb C^4$. This space of bilinear maps includes the matrix multiplication operator $M_2$ for two by two matrices. We show these newly obtained polynomials do not vanish on the matrix multiplication operator $M_2$, which gives a new proof that the border rank of the multiplication of $2 × 2$ matrices is seven. Other examples are considered along with an explanation of how to implement the methods.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe