TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen

All Publications

Even partitions in plethysms
Zitatschlüssel BCI-Even-Partitions-In-Plethysms
Autor Peter Bürgisser and Matthias Christandl and Christian Ikenmeyer
Seiten 322-329
Jahr 2011
Journal Journal of Algebra
Jahrgang 328
Zusammenfassung We prove that for all natural numbers $k,n,d$ with $kłe d$ and every partition λ of size $kn$ with at most $k$ parts there exists an irreducible $\mathrmGL(d,\mathbb C)$-representation of highest weight $2\cdotłambda$ in the plethysm $\mathrmSym^k \mathrmSym^2n (C^d)$. This gives an affirmative answer to a conjecture by Weintraub (J. Algebra, 129 (1):103-114, 1990). Our investigation is motivated by questions of geometric complexity theory and uses ideas from quantum information theory.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe