TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen




All Publications

Counting Irreducible Components of Complex Algebraic Varieties
Zitatschlüssel BS-Counting-Irreducible-Components-Of-Complex-Algebraic-Varieties
Autor Peter Bürgisser and Peter Scheiblechner
Seiten 1-35
Jahr 2010
ISSN 1016-3328
DOI 10.1007/s00037-009-0283-3
Journal Computational Complexity
Jahrgang 19
Nummer 1
Zusammenfassung We present an algorithm for counting the irreducible components of a complex algebraic variety defined by a fixed number of polynomials encoded as straight-line programs (slps). It runs in polynomial time in the Blum-Shub-Smale (BSS) model and in randomized parallel polylogarithmic time in the Turing model, both measured in the lengths and degrees of the slps. Our algorithm is obtained from an explicit version of Bertini's theorem. For its analysis we further develop a general complexity theoretic framework appropriate for algorithms in algebraic geometry.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe