TU Berlin

Fachgebiet Algorithmische AlgebraPublications

Inhalt des Dokuments

zur Navigation

Search for Publication

Suche nach Publikationen




All Publications

The complexity of semilinear problems in succinct representation
Zitatschlüssel BCN-The-Complexity-Of-Semilinear-Problems-In-Succinct-Representation
Autor Peter Bürgisser and Felipe Cucker and Paulin Jacobé de Naurois
Seiten 197-235
Jahr 2006
Journal Computational Complexity
Jahrgang 15
Nummer 3
Zusammenfassung We prove completeness results for twenty three problems in semilinear geometry. These results involve semilinear sets given by additive circuits as input data. If arbitrary real constants are allowed in the circuit, the completeness results are for the Blum-Shub-Smale additive model of computation. If, in contrast, the circuit is constant-free, then the completeness results are for the Turing model of computation. One such result, the P^NP[log]-completeness of deciding Zariski irreducibility, exhibits for the first time a problem with a geometric nature complete in this class.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe