direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

vor >> [2]

Joswig, Michael and Theobald, Thorsten (2013). Polyhedral and algebraic methods in computational geometry [6]. Springer, x+250.


Joswig, Michael and Ziegler, Günter M. (2014). Foldable triangulations of lattice polygons [7]. Amer. Math. Monthly, 706-710.


Joswig, Michael and Paffenolz, Andreas (2013). Torische Geometrie mit textttpolymake [8]. Computeralgebra-Rundbrief, 13-17.


Joswig, Michael (2015). Über die Anfänge einer Fields-Medaillistin [9]. Mitteilungen der DMV, 43-45.


Michael Joswig (2015). Webs of stars or how to triangulate free sums of point configurations [10]. Oberwolfach Reports


Michael Joswig (2015). Long and winding central paths [11]. Oberwolfach Reports


Joswig, Michael and Lutz, Frank H. and Tsuruga, Mimi (2014). Sphere recognition: heuristics and examples [12].


Joswig, Michael and Loho, Georg (2015). Weighted digraphs and tropical cones [13].


Joswig, Michael and Loho, Georg and Lorenz, Benjamin and Schröter, Benjamin (2015). Linear programs and convex hulls over fields of Puiseux fractions [14].


Joswig, Michael and Kileel, Joe and Sturmfels, Bernd and Wagner, André (2015). Rigid multiview varieties [15].


Joswig, Michael and Schröter, Benjamin (2015). The degree of a tropical basis [16].


Joswig, Michael and Mehner, Milan and Sechelmann, Stefan and Techter, Jan and Bobenko, Alexander I. (2015). DGD Gallery: Storage, sharing, and publication of digital research data [17].


Joswig, Michael and Lutz, Frank H. and Tsuruga, Mimi (2014). Heuristics for sphere recognition [18]. Mathematical software – ICMS 2014. 4th international congress, Seoul, South Korea, August 5–9, 2014. Proceedings. Berlin: Springer, 152–159.


Herrmann, Sven and Joswig, Michael and Pfetsch, Marc E. (2013). Computing the bounded subcomplex of an unbounded polyhedron [19]. Comput. Geom., 541–551.


Herrmann, Sven and Joswig, Michael and Speyer, David (2014). Dressians, tropical Grassmannians, and their rays [20]. Forum Math., 1853-1882.


vor >> [22]
------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008