Page Content
to Navigation
There is no English translation for this web page.
Publications
Preprints
- F. Beier, J. von Lindheim, S. Neumayer, G. Steidl (2021).
Unbalanced Multi-Marginal Optimal Transport.
(arXiv Preprint #2103.10854)
[arxiv] - J. Hertrich, S. Neumayer, G. Steidl (2020).
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms.
(arXiv Preprint #2011.02281)
[arxiv] [Code] - P. Koltai, J. von Lindheim, S. Neumayer, G. Steidl (2020).
Transfer Operators from Optimal Transport Plans for Coherent Set Detection.
(arXiv Preprint #2006.16085)
[arxiv] - S. Neumayer, G. Steidl (2020).
From Optimal Transport to Discrepancy.
Accepted in Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging.
[arxiv]
Journal articles
- P. Hagemann, S. Neumayer (2021).
Stabilizing Invertible Neural Networks Using Mixture Models.
Inverse Problems.
[doi] [Code] - M. Ehler, M. Gräf, S. Neumayer, G. Steidl (2021).
Curve Based Approximation of Measures on Manifolds by Discrepancy Minimization.
Foundations of Computational Mathematics.
[doi] - C. Hartman, H. A. Weiss, P. Lechner, W. Volk, S. Neumayer, J. H. Fitschen, G. Steidl (2021).Measurement of strain, strain rate and crack evolution in shear cutting.
Journal of Materials Processing Technology. 288:116872.
[doi] - M. Hasannasab, J. Hertrich, S. Neumayer, G. Plonka, S. Setzer, G. Steidl (2020).
Parseval Proximal Neural Networks.
Journal of Fourier Analysis and Applications. 26:59.
[doi] [Code]
- A. Effland, S. Neumayer, M. Rumpf (2020).
Convergence of the Time Discrete Metamorphosis Model on Hadamard Manifolds.
SIAM Journal on Imaging Sciences. 13(2):557–588.
[doi] - M. Bačák, J. Hertrich, S. Neumayer, G. Steidl (2020).
Minimal Lipschitz and ∞-Harmonic Extensions of Vector-Valued Functions on Finite Graphs.
Information and Inference: A Journal of the IMA. 9(4):935-959.
[doi] [Code] - S. Neumayer, M. Nimmer, S. Setzer, G. Steidl (2020).
On the rotational invariant L1-norm PCA.
Linear Algebra and its Applications. 587:243-270.
[doi] - S. Neumayer, M. Nimmer, S. Setzer, G. Steidl (2020).
On the robust PCA and Weiszfeld's algorithm.
Applied Mathematics and Optimization. 82:1017-1048.
[doi] - L. Lang, S. Neumayer, O. Öktem, C. B. Schönlieb (2020).
Template-Based Image Reconstruction from Sparse Tomographic Data.
Applied Mathematics and Optimization. 82:1081-1109.
[doi] [Code] - S. Neumayer, J. Persch, G. Steidl (2019).
Regularization of Inverse Problems via Time Discrete Geodesics in Image Spaces.
Inverse Problems. 35(5):055005.
[doi] - S. Neumayer, J. Persch, G. Steidl (2018).
Morphing of Manifold-Valued Images inspired by Discrete Geodesics in Image Spaces.
SIAM Journal on Imaging Sciences. 11(3):1898–1930.
[doi]
Conference Proceedings
- J. Lellmann, S. Neumayer, M. Nimmer, G. Steidl, (2019).
Methods for finding the offset in robust subspace fitting.
PAMM. 19(1).
[doi] - J. Hertrich, M. Bačák, S. Neumayer, G. Steidl (2019).
Minimal Lipschitz Extensions for Vector-Valued Functions on Finite Graphs.
Scale Space and Variational Methods in Computer Vision. Lellmann J., Burger M., Modersitzki J. (eds.) Lecture Notes in Computer Science 11603, pages 183-195.
[doi] [Code] - S. Neumayer, M. Nimmer, G. Steidl, H. Stephani (2017).
On a projected Weizfeld algorithm.
Scale Space and Variational Methods in Computer Vision. Lauze F., Dong Y., Dahl A. (eds.) Lecture Notes in Computer Science 10302, pages 486-497.
[doi]